Home
Class 12
MATHS
Lt(x rarr0)(e^(x)-1)/(x) is equal to...

`Lt_(x rarr0)(e^(x)-1)/(x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)e^(-1/x) is equal to

Lt_(x rarr0)(tan^(-1)x)/(x)

The value of lim_(x rarr0)(e^(x)-1-x)/(x^(2)) equals to

lim_(x rarr0)(x(e^(x)-1))/(1-cos x) is equal to

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

lim_(x rarr0)sin^(-1)(sec x) is equal to