Home
Class 11
MATHS
Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)...

Solve `y=tan^(-1)((sqrt(1+x^2)-1)/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))

If y=(tan^(-1))(sqrt(1+x^(2))-1)/(x), then y'(1) is equal to

If y = tan ^(-1) ((sqrt(1 + x ^(2) )-1 )/( x ) ) , then y '(1)=

Solve for x:tan^(-1)[(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))]=beta

Let y_1=tan^(-1)((sqrt(1+x^2)-1)/x) and y_2=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) then (dy_1)/(dy_2)=

(iv) If y=tan^(-1)(x/(1+sqrt(1-x^(2))))+sin(2tan^(-1)sqrt((1-x)/(1+x))) , then find (dy)/(dx) for x epsilon(-1,1)

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=