Home
Class 12
MATHS
If x=1+loga (bc);y=1+logb(ac);z=1+logc (...

If `x=1+log_a (bc);y=1+log_b(ac);z=1+log_c (ab)` then prove that `xyz=xy+yz+zx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If =1+log_(a)(bc);y=1+log_(b)(ac);z=1+log_(c)(ab) then prove that xyz=xy+yz+zx

If =1+log_(a)bc,y=1+log_(b)ca,z=1+log_(c)ab then prove that xyz=xy+yz+zx

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz

If x=log_(b)a,y=log_(c)b,z=log_(a)c then xyz=

If x = 1 + log_(a) bc, y = 1 + log_(b) ca, z = 1 + log_(c) ab, then xy + yz + zx =

If x=(log)_(2a)a,y=(log)_(3a)2a,z=(log)_(4a)3a, prove that 1+xyz=2yz

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If =1+(log)_(a)bc,backslash y=1+(log)_(b)ca backslash and backslash z=1+(log)_(c)ab then prove that xyz=xy+yz+zx