Home
Class 12
MATHS
If S(1),S(2)andS(3) denote the sum of fi...

If `S_(1),S_(2)andS_(3)` denote the sum of first `n_(1)n_(2)andn_(3)` terms respectively of an A.P., then
`(S_(1))/(n_(1))(n_(2)-n_(3))+(S_(2))/(n_(2))+(n_(3)-n_(1))+(S_(3))/(n_(3))(n_(1)-n_(2))`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_1 ,S_2 and S_3 denote the sum of first n_1,n_2 and n_3 terms respectively of an A.P. Then S_1/n_1 (n_2-n_3) + S_2/n_2 (n_3-n_1)+S_3/n_3 (n_1-n_2) equals :

If S_(1), S_(2), S_(3) are the sums of n, 2n, 3n terms respectively of an A.P., then S_(3)//(S_(2) - S_(1))-

If s_(1),s_(2)and s_(3) are the sum of first n , 2n, 3n terms respectively of an arithmetical progression , then show that s_(3)=3 (s_(2)-s_(1))

If S_(n) denotes the sum of first n terms of an A.P., then (S_(3n)-S_(n-1))/(S_(2n)-S_(n-1)) is equal to

If S_(n) denotes the sum of first n terms of an A.P. If S_(2n) = 5(S_n) , then prove (S_(6n))/(S_(3n))=17/8

Let S_(n) denote the sum of first n terms of an A.P.If S_(2n)=3S_(n), then find the ratio S_(3n)/S_(n)

If S_(1),S_(2) andS _(3) be respectively the sum of n,2n and 3n terms of a G.P.prove that S_(1)(S_(3)-S_(2))=(S_(2)-S_(1))^(2)

If S_(1),S_(2),S_(3) be respectively the sums of n,2n and 3n terms of a G.P.,prove that S_(1)(S_(3)-S_(2))=(S_(2)-S_(1))^(2)

If S_(1),S_(2),S_(3) be respectively the sum of n,2n and 3n terms of a GP, then (S_(1)(S_(3)-S_(2)))/((S_(2)-S_(1))^(2)) is equal to