Home
Class 12
MATHS
Suppose f(x)=e^(ax)+e^(bx), where aneb a...

Suppose `f(x)=e^(ax)+e^(bx),` where `aneb and f''(x)-2f'(x)-15f(x)=0` for all x, then the value of `|a+b|` is equal to......

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f(x)=e^(ax)+e^(bx) ,where a!=b, and that f''(x)-2f'(x)-15f(x)=0 for all x Then the value of ab is equal to:

Suppose f(x)=e^(ax)+e^(bx), where a!=b, and that f''(x)-2f'(x)-15f(x)=0 for all x Then the value of (ab)/(3) is

Suppose f(x)=e^(ax)+e^(bx)," where " a ne b, and that f''(x) -2f'(x)-15f(x)=0 for all x. Then the product ab is

Suppose f(x)=e^(a x)+e^(b x) , where a!=b , and that f"(x)-2f'(x)-15f(x)=0 for all x . Then the product a b is equal to 25 (b) 9 (c) -15 (d) -9

If f(x)=e^(x) , then the value of 7 f (x) will be equal to

Suppose f(x)=e^(a x)+e^(b x),w h e r ea!=b , and that f^(primeprime)(x)-2f^(prime)(x)-15f(x)=0 for all x . Then the product a b is (a)25 (b) 9 (c) -15 (d) -9

Suppose f(x)=(3)^(px)+(3)^(qx), where p!=q and (f''(x))/((log_(e)3)^(2))-(2f'(x))/((log_(e)3))-15f(x)=0 for all x, then the value of |p+q| is

If f(x) = be^(ax) + ae^(bx) , then f''(0) is equal to

If f(x) = e^(-x) , then (f (-a))/(f(b)) is equal to

If y=f(x)=(ax-b)/(bx-a) , the prove that : x=f(y)