Home
Class 12
MATHS
x=(sin^(3)t)/sqrt(cos 2t), y=(cos^(3)t)/...

`x=(sin^(3)t)/sqrt(cos 2t), y=(cos^(3)t)/sqrt(cos 2t)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are connected parametrically by the equations given,without eliminating the parameter,Find (dy)/(dx)x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t))

If x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t)) show that (dy)/(dx)=0att=(pi)/(6)

Find (dy)/(dx) , if x=(sin^3t)/(sqrt(cos2t)) , y=(cos^3t)/(sqrt(cos2t))

Find (dy)/(dx) if: x=a(cos t+(1)/(2)ln tan^(2)(t)/(2)) and y=a sin t.x=sin t sqrt(cos2t) and y=cost sqrt(cos2t)

x=sqrt(sin 2t),y=sqrt(cos 2 t)

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

Find (dy)/(dx), when x=(cos^(-1)1)/(sqrt(1+t^(2))) and y=(sin^(-1)t)/(sqrt(1+t^(2))),t in R

Which one of the following equation represent parametric equation to a parabolic curve? x=3cos t;y=4sin tx^(2)-2=2cos t;y=4cos^(2)(t)/(2)sqrt(x)=tan t;sqrt(y)=sec tx=sqrt(1-sin t;)y=sin(t)/(2)+cos(t)/(2)

The expression (1)/(sqrt(2)){(sin tan^(-1)cos tan^(-1)t)/(cos tan^(-1)sin cot^(-1)sqrt(2)t)}*{sqrt((1+2t^(2))/(2+t^(2)))}

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos^(-1)t)) show that (dy)/(dx)=-(y)/(x)