Home
Class 12
MATHS
If f: R to R is function defined by ...

If ` f: R to R ` is function defined by ` f(x) = [x-1] cos ( (2x -1)/(2)) pi`, where [.] denotes the greatest integer function , then f is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R to R is function defined by f(x) = [x]^3 cos ((2x-1)/2)pi , where [x] denotes the greatest integer function, then f is :

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

If f(x) = [x] - [x/4], x in R where [x] denotes the greatest integer function, then

The function f(x)=[x]cos((2x-1)/(2))pi where I l denotes the greatest integer function,is discontinuous

If f(x)=cos|x|+[|(sin x)/(2)|], ,(where [.] denotes the greatest integer function),then f(x) is