Home
Class 12
MATHS
solve (1+x^(2))(dy)/(dx)+y=e^(Tan^(-1)x)...

solve `(1+x^(2))(dy)/(dx)+y=e^(Tan^(-1)x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of differential equation (1+x^(2)) (dy)/(dx) + y = e^(tan^(-1)x)

The solution of the differential equation (1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x) is :

Solve (1+x^(2))(dy)/(dx)=x+tan^(-1)x

The integrating factor of the differential equation (1+x^2)(dy)/(dx)+y=e^("tan"^(-1)x) is

Solve the differential equation: (1+x^(2))(dy)/(dx)+y=tan^(-1)x

Solve x^(2)((dy)/(dx))+y=1

Solve: (x-y)^2(dy)/(dx)=1

Solve: (1+x^2) dy/dx+y=e^(tan^-1x)

Solve e^(-x+y)(dy)/(dx)=1