Home
Class 12
MATHS
lim(x->0)(sin^(- 1)x)/x...

`lim_(x->0)(sin^(- 1)x)/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that lim_(x rarr0)(sin^(-1)x)/(x)=1

lim_(x rarr0)(sin^(-1)x)/(sin x) (A) 2 (B) 3 (C) 0 (D) 1

lim_(x rarr0) [(sin^(-1)x)/(x)]

(lim)_(x->0)([100(sin^(-1)\ x)/x]+[100(tan^(-1)x)/x])=

lim_(x rarr0)(sin^(-1)x+3x)/(tan x+2sin((1)/(2)sin^(-1)x)[3-4sin^(2)((1)/(2)sin^(-1)x)])=

lim_(x rarr0)sin^(-1){x}

Show : lim_( x -> 0 ) tan^(-1)x/ sin^(-1)x = 1

lim_(x rarr0)(sin^(-1)x-sin x)/(x^(3)) 1) (1)/(2) , 2) (1)/(3) , 3) (1)/(4) , 4) (1)/(5)

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

lim_(x rarr0)sin^(-1)((1)/({x}))