Home
Class 12
MATHS
Show that sin^(-1)(12)/(13)+cos^(-1)4/5+...

Show that `sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(-1)(12)/(13)+cos^(-1)(4)/(5)+tan^(-1)(63)/(16)=pi

Show that sin^(-1)'5/13+cos^(-1)'3/5=tan^(-1)'63/16 .

Let alpha=2tan^(-1)((1)/(2))+(sin^(-1)3)/(5) and beta=sin^(-1)((12)/(13))+cos^(-1)((4)/(5))+cos^(-1)((16)/(63)) be such that2sin alpha and cos beta are roots of the equation x^(2)-px+q=0, then (p-q) is

sin^(-1)(5/13)+tan^(-1)(12/5)=

Show that: cos(2tan^(-1)((1)/(7)))=sin(4tan^(-1)((1)/(3)))

Prove that cos^(-1) ((5)/(13))+cos^(-1) (-7/25)+sin^(-1) (36)/(325)=pi

cos^(-1)tan(-(5 pi)/(4))

Show that : 2 sin^(-1).(3/5) - tan^(-1)(17/31) = pi/4

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Prove that: cos^(-1)((12)/(13))+sin^(-1)((3)/(5))=sin^(-1)((56)/(65))