Home
Class 12
MATHS
Let (1+x+2x^2)^20=a0+a1x+a2x^2+....+a40x...

Let `(1+x+2x^2)^20=a_0+a_1x+a_2x^2+....+a_40x^40. " Then, "a_1+a_3+a_5.....+a_37` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x+2x^2)^20 = a_0+a_1x+a_2x^2+. . . +a_40x^40 then a_1+a_3+a_5+ . . . +a_37=

if (1+x+x^2)^(10)(1-x+x^2)^(10)=a_0+a_x+a_2x^2+a_3x^3+...........+a_(40)x^(40) then a_1+a_3+.....+a_(39) is equal to

Let (1+x+2x^(2))^(20) = a_(0)+a_(1)x+a_(2)x^(2)+...+a_(40)x^(40) then a_(1)+a_(3)+a_(5)+...+a_(39) is equal to

If (1+x)^n=a_0+a_1x+a_2x^2+...+a_nx^n then find : a_1-a_3+a_5-a_7+… .

If (1+x+2x^2)^20=a_0 + a_1x+a_2x^2+....................+a_40x^40 then a_0+a_2+a_4+.............+a_38 is

If (1+x-x^2)^10/(1+x^2)=a_0+a_1x+a_2x^2+...+a_nx^n+… then find a_1+a_3+a_5+…

If (1+x)^n=a_0+a_1x+a_2x^2+...+a_nx^n then find : a_0+a_3+a_6+a_9+… .

If (1 + ax + b x^2)^4 = a_0 +a_1 x + a_2 x^2 +...+a_8 x^8 when a,b,a_0,a_1,a_2...,a_8 in R such that a_0+a_1+a_2 != 0 and |(a_0,a_1,a_2),(a_1,a_2,a_3),(a_2,a_0,a_1)| then the value of 5a/b (A) 6 (B) 8 (C) 10 (D) 12

If a_1, a_2, a_3 ,........ are in A.P. such that a_1 + a_5 + a_10 + a_15 + a_20 + a_24 = 225 , then a_1 + a_2+ a_3 + ......+ a_23 +a_24 is equal to