Home
Class 12
MATHS
int(1+x+x^(2))/(1+x^(2))e^(tan^(-1)x)dx=...

`int(1+x+x^(2))/(1+x^(2))e^(tan^(-1)x)dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/((1+x^(2))tan^(-1)x)dx

int(1)/(x^(2))tan^(2)((1)/(x))dx

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

int(tan^(-1)x)/(x^(2))*dx

The value of int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx is equal to

int(x tan^(-1)x^(2))/(1+x^(4))dx

int(x^(2)tan^(-1)x)/(1+x^(2))dx

int e^(x) ((1+ x^(2)))/((1+x)^(2))dx

int(e^(x)(1-x)^(2))/((1+x)^(2))dx