Home
Class 12
MATHS
lim(n->oo)(x^n)/(n !)...

`lim_(n->oo)(x^n)/(n !)`

Promotional Banner

Similar Questions

Explore conceptually related problems

S1: lim_(n->oo) (2^n + (-2)^n)/2^n does not exist S2: lim_(n->oo) (3^n + (-3)^n)/4^n does not exist

lim_(n rarr oo)(((n)/(n))^(n)+((n-1)/(n))^(n)+......+((1)/(n))^(n)) equals

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

lim_(n rarr oo)(1+(x)/(n))^(n)

The equivalent definition of the function f(x)=lim_(n to oo)(x^(n)-x^(-n))/(x^(n)+x^(-n)), x gt 0 , is

If f(x)=lim_(n rarr oo)(x^(n)-x^(-n))/(x^(n)+x^(-n)),x>1 then int(xf(x)log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx is

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)

lim_(n rarr oo)(n!)/((n+1)!+n!) is equal to