Home
Class 11
MATHS
Domain of f(x)=sqrt(2{x}^(2)-3{x}+1 (whe...

Domain of `f(x)=sqrt(2{x}^(2)-3{x}+1` (where `{}` denotes the fraction part),in `[-1,1]`is,

A

`[-1,1] ~((1)/(2),1)`

B

`[-1,-(1)/(2)] cup [0,(1)/(2)] cup {1}`

C

`[-1,(1)/(2)]`

D

`[-(1)/(2),1]`

Text Solution

Verified by Experts

We must have
`2{x}^(2)-3{x}+1 ge 0, " i.e., " {x} ge 1 " or " {x} le 1//2.`
Thus, we have ` o le {x} le 1//2" or " x in [n,n+(1)/(2)], n in I.`
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1]

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1] is ( a )[-1,1]-((1)/(2,1))( b) [-1,-(1)/(2)]uu[(0,1)/(2)]uu{1}(c)[-1,(1)/(2)] (d) [-(1)/(2),1]

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

Domain of f(x)=(1)/(sqrt({x+1}-x^(2)+2x)) where {} denotes fractional part of x.

The domain of f(x)=sqrt(x-2{x}). (where {} denotes fractional part of x ) is

The domain of f(x)=(1)/(sqrt(-x^(2)+{x})) (where {.} denotes fractional part of x) is

The number of integral values of x in the domain of f(x)=sqrt(3-x)+sqrt(x-1)+log{x}, where {} denotes the fractional part of x, is

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

Domain of f(x)=sqrt((x-1)/(x-2{x})), where {.}