Home
Class 12
MATHS
int(0)^(pi//2)(2logcosx-logsin2x)dx=-(pi...

`int_(0)^(pi//2)(2logcosx-logsin2x)dx=-(pi)/(2)(log2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(pi//2)(2logsinx-logsin2x)dx=(pi)/(2)(log2) .

int_(0)^((pi)/(2))(2log cos x-log sin2x)dx

Show that int_(0)^((pi)/(2))log(sin2x)dx=-(pi)/(2)(log2)

int_(0)^(pi//2) (2logsin x - log sin 2x) dx=

Evaluate: int_0^(pi//2)(2logsinx-logsin2x)dx

Evaluate int_0^(pi/2) (2logsinx-logsin2x)dx

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2