Home
Class 12
MATHS
tan[(sqrt(1+x^(2))-1)/x]=...

`tan[(sqrt(1+x^(2))-1)/x]`=

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^-1((sqrt(1+x^2)-1)/x)

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=

If tan^(-1) (sqrt( 1 +x^(2)) -1)/x = lambda tan^(-1)x then the value of lambda is

Differentiate tan^(-1)[(sqrt(1+x^(2))-1)/(x)] with respect to x

On differentiating tan^(-1) [ ( sqrt( 1+ x^(2))-1)/( x) ] with respect to x, the result would be

Prove that tan^(-1)backslash(sqrt(1+x^(2))-1)/(x)=(1)/(2)tan^(-1)x

Simplify tan^(-1)((sqrt(1+x^2)-1)/x)

If tan^(-1) .(sqrt(1+x^(2))-1)/x = 4^(@) , then

if tan^(-1)((sqrt(1+x^(2))-1)/(x))=(pi)/(45) then: