Home
Class 13
MATHS
If y=(ax+b)^m then find D^n(ax+b)^m...

If `y=(ax+b)^m` then find `D^n(ax+b)^m`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given , y=ln(ax+b), then find (dy)/(dx)

If y = log(ax + b) , then (d^2 y)/(dx^2) is

if y=log sec(ax+b)^(3) then find the value of (dy)/(dx)

If u=ax+b, then (d^(n))/(dx^(n))(f(ax+b)) is equal to a.(d^(n))/(du^(n))(f(u)) b.a(d^(n))/(du^(n))(f(u)) c.a^(n)(d^(n))/(du^(n))f(u) d.a^(-n)(d^(n))/(dx^(n))(f(u))

If y=sin(ax+b) , then what is (d^(2)y)/(dx^(2)) at x=-(b)/(a) . where a and b are constants and a!=0 ?

If y=(ax+b)^(n) , they (dy)/(dx) is equal to :

If y^(2)=ax^(2)+2bx+c," then "(ax+b)^(3)(d^(2)x)/(dy^(2))=

If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

If y=ax^(n+1)+bx^(-n), then x^(2)(d^(2)y)/(dx^(2))=n(n-1)y(b)n(n+1)y(c)ny(d)n^(2)y