Home
Class 11
MATHS
In the equation int (dx)/sqrt(2ax - x^...

In the equation ` int (dx)/sqrt(2ax - x^(2) ) = a^(n) sin ^(-1) [(x-a)/(a) - 1]`. Find the value of n .

Promotional Banner

Similar Questions

Explore conceptually related problems

In the equation int (dx)/sqrt(2ax - x^(2) ) = a^(2) sin ^(-1) [(x)/(a) - 1] . Find the value of n .

int(dx)/(sqrt(2)ax-x^(2))=a^(n)sin^(-1){(x-a)/(a)}a->

Given that int (dx)/(sqrt(2 ax - x^2)) = a^n sin^(-1) ((x-a)/(a)) where a is a constant. Using dimensional analysis. The value of n is

Find int(dx)/(sqrt(1+sin2x))

int sin^(n)(sin^(-1)x)dx

int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate int1/(x(sqrt(ax-x^2)))dx

Evaluate : int sin^(-1) x/ sqrt( 1 - x^2 ) dx