Home
Class 12
MATHS
The value of lim(n rarr oo)((1)/(2^(n)))...

The value of `lim_(n rarr oo)((1)/(2^(n)))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(n^(2))/(2^(n))

The value of lim_(n rarr oo)(1)/(n^(2)){(sin^(3)pi)/(4n)+2(sin^(3)(2 pi))/(4n)+...+n(sin^(3)(n pi))/(4n)} is equal to

For positive integers k=1,2,3,....n, let S_(k) denotes the area of /_AOB_(k) such that /_AOB_(k)=(k pi)/(2n),OA=1 and OB_(k)=k The value of the lim_(n rarr oo)(1)/(n^(2))sum_(k-1)^(n)S_(k) is

lim_(n rarr oo)(n+(-1)^(n))/(n)

The value of lim_(x rarr oo)((n!)/((mn)^(n)))^((1)/(n)), where nin N, is

lim_(n rarr oo)(1-(2)/(n))^(n)

The value of lim_(n rarr oo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))++(1)/(2n)] is

The value of lim_ (n rarr oo) [(1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ... (1+ (n ^ (2)) / (n ^ (2)))] ^ ((1) / (n))

The value of lim_(n rarr oo)n{(1)/(3n^(2)+8n+4)+(1)/(3n^(2)+16n+16)+...+ nterms } is equal to

The value of lim_ (n rarr oo) [(1) / (n) + (e ^ ((1) / (n))) / (n) + (e ^ ((2) / (n))) / (n) + .... + (e ^ ((n-1) / (n))) / (n)] is: