Home
Class 11
MATHS
lim(n->oo)(1/3+1/(3^2)+1/(3^3)++1/(3^n))...

`lim_(n->oo)(1/3+1/(3^2)+1/(3^3)++1/(3^n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) ((1) / (2) +1+ (3) / (2) + ... + (n) / (2)) / (25n ^ (2) + n + 3)

lim_ (n rarr oo) ((1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (3)) ++ (1) / (3 ^ (n) ))

evaluate lim_ (n rarr oo) [(1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (2)) + ......... + (1) / (3 ^ (n))]

lim_(n to oo) [ 1^2/n^3 + (2^2)/(n^3) + …+ ((n-1)^2)/(n^3)]

lim_ (n rarr oo) (1+ (1) / (2) + (1) / (2 ^ (2)) + (1) / (2 ^ (3)) + ...... (1) / (2 ^ (n))) / (1+ (1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (3)) ...... (1) / (3 ^ (n)))

lim_ (n rarr oo) [(1 ^ (2)) / (n ^ (3) + 1 ^ (3)) + (2 ^ (2)) / (n ^ (3) + 2 ^ (3)) + (3 ^ (2)) / (n ^ (3) + 3 ^ (3)) + ... * (1) / (2n)]

lim_ (n rarr oo) [(1) / (1.2) + (1) / (2.3) + (1) / (3.4) + ... + (1) / (n (n + 1))] =

Prove that lim_ (n rarr oo) ((1 ^ (2)) / (n ^ (3)) + (2 ^ (2)) / (n ^ (3)) + (3 ^ (2)) / ( n ^ (3)) + .... + (n ^ (2)) / (n ^ (3))) = (1) / (3)

lim_ (n rarr oo) {(1 ^ (2)) / (1-n ^ (3)) + (3) / (1 + n ^ (2)) + (5 ^ (2)) / (1- n ^ (3)) + (7) / (1 + n ^ (2)) + ....}