Home
Class 11
MATHS
If f(x) = (1 + x)/(1 - x) Prove that ((f...

If `f(x) = (1 + x)/(1 - x)` Prove that `((f(x) f(x^(2)))/(1 + [f(x)]^(2))) = (1)/(2)`

Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 3

    ICSE|Exercise SECTION B|10 Videos
  • SELF ASSESSMENT PAPER 3

    ICSE|Exercise SECTION C|10 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise SECTION C QUESTIONS|8 Videos
  • SELF ASSESSMENT PAPER 4

    ICSE|Exercise SECTION C|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

If f(x)=(1)/(1-x) , then prove that : f[f{f(x)}]=x

If f(x)=(x)/(x-1) , then prove that (f(a))/(f(a+1))=f(a^(2))

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

If f(x)=log_e((1-x)/(1+x)); prove that f(a)+f(b)=f((a+b)/(1+a b))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=-1/(f(x))

If f(1) = 1, f'(1) = 3, then the derivative of f(f(x))) + (f(x))^(2) at x = 1 is