Home
Class 11
MATHS
Prove that: \ sqrt(2+sqrt(2+2cos4theta))...

Prove that: `\ sqrt(2+sqrt(2+2cos4theta))=2costheta`

Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 5

    ICSE|Exercise SECTION B|10 Videos
  • SELF ASSESSMENT PAPER 5

    ICSE|Exercise SECTION C|11 Videos
  • SELF ASSESSMENT PAPER 4

    ICSE|Exercise SECTION C|10 Videos
  • SEQUENCE AND SERIES

    ICSE|Exercise CHAPTER TEST |25 Videos

Similar Questions

Explore conceptually related problems

Show that sqrt[2+sqrt[2+2cos4theta]]=2costheta

Show that: sqrt(2+sqrt(2+sqrt(2+2cos8theta)))=2costheta,0

Prove that sqrt ( 2 + sqrt (2 + sqrt (2 + 2 cos 8 theta))) = 2 cos theta, where theta in [ (-pi)/(8), (pi)/(8)]

Prove that: (2cos2^ntheta+1)/(2costheta+1)=(2costheta-1)(2cos2theta-1)(2cos2^2theta-1) ...(2cos2^(n-1)theta-1)

Prove that: sqrt((1+costheta)/(1-costheta))=cos e ctheta+cottheta .

Find the Value of \ sqrt(2+sqrt(2+2cos4theta))

Prove that : sqrt((1+costheta)/(1-costheta))="cosec"theta+cottheta

Prove that sqrt((1+costheta)/(1-costheta))+sqrt((1-costheta)/(1+costheta))=2cosectheta

Prove that sqrt((1-cos2theta)/(1+cos2theta))=tantheta where tantheta>0

If pi/2