Home
Class 12
MATHS
For any three non-zero vectors bar a,b...

For any three non-zero vectors `bar a,bar b,bar c,|bar a xx bar b.bar c|=|bar a||bar b||bar c|` hold if and only if

Promotional Banner

Similar Questions

Explore conceptually related problems

For any three non-zero vectors bar(a),bar(b),bar(c),|bar(a)xxbar(b).bar(c)|=|bar(a)||bar(b)||bar(c)| hold if and only if

Given four non zero vectors bar a,bar b,bar c and bar d. The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

For non -zero vectors a and b if |bar(a)+bar(bar(b))|<|bar(a)-bar(b)|| then bar(a) and bar(b) are

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

If bar(a),bar(b),bar(c) are non - coplanar vectors, then show the vectors -bar(a)+3bar(b)-5bar(c),-bar(a)+bar(b)+bar(c) and 2bar(a)-3bar(b)+bar(c) are coplanar.

If bar a=hat i +hat j+ hat k, bar b=hat i-hat j +hat k, bar c=hat i +2hat j-hat k then the value of |[bar a.bar a, bar a.bar b, bar a.bar c],[bar b.bar a,bar b.bar b, bar b.bar c],[bar c.bar a,bar c.bar b,bar c.barc]|

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

if bar a+2 bar b+3bar c=bar 0 then bar axxbar b+bar b xx bar c+bar cxx bara = lambda (bar b xx bar c) ,where lambda=

Let the vectors bar(a),bar(b),bar(c) be such that |bar(a)|=2,|bar(b)|=4 and |bar(c)|=4 . If the projection of bar(b) on bar(a) is equal to the projection of bar(c) on bar(a) and bar(b) is perpendicular to bar(c) ,then the value of |bar(a)+bar(b)-bar(c)| is

Let the vectors bar(a),bar(b),bar(c) be such that |bar(a)|=2,|bar(b)|=4 and |bar(c)|=4 . If the projection of bar(b) on bar(a) on is equal to the projection of bar(c) on bar(a) and bar(b) is perpendicular to bar(c) then the value of |bar(a)+bar(b)-bar(c)| is