Home
Class 12
MATHS
If g(x) is inverse function of f(x)=x^(3...

If g(x) is inverse function of `f(x)=x^(3)+3x-3` then `g'(1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a curve y=f(x) be defined parametrically as y=t^(3)+t^(2)+1,x=t^(2)+2,t>0. If g(x) is inverse function of f(x) then g'(3) is

If g is inverse of function f and f'(x)=sinx , then g'(x) =

g(x) is a inverse function of f.g(x)=x^(3)+e^((x)/(2)) then find the value of f'(x)

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

Consider a function f(x)=x^(x), AA x in [1, oo) . If g(x) is the inverse function of f(x) , then the value of g'(4) is equal to

Let f(x)=exp(x^(3)+x^(2)+x) for any real number and let g(x) be the inverse function of f(x) then g'(e^(3))

Let f(x)=x^(3)+3x+2 and g(x) is inverse function of f(x) then the value of g'(6) is

Let f(x)=x^(105)+x^(53)+x^(27)+x^(13)+x^(3)+3x+1 If g(x) is inverse of function f(x), then the value of g'(1) is (a)3(b) (1)/(3)(c)-(1)/(3)(d) not defined

Let f(x)=log_(e)x+2x^(3)+3x^(5), where x>0 and g(x) is the inverse function of f(x) , then g'(5) is equal to:

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to