Home
Class 12
MATHS
Prove that in a triangle ABC, (cosB-cosC...

Prove that in a triangle ABC, `(cosB-cosC)/(cosA+1) =(c-b)/a`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that in triangle ABC, 2cos A cosB cos Cle(1)/(8) .

IN triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=

In a triangle ABC cosA+cosB+cosC<=k then k=

In triangle ABC, 2(bc cosA-ac cosB-ab cosC)=

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is

In triangleABC, 2(bc cosA+ac cosB+ab cosC)=

If an a triangle A B C ,(2cosA)/a+(cosB)/b+(2cosC)/c=a/(b c)+b/(a c), find the /_A= 90^0 (b) 60^0 (c) 30^0 (d) none of these