Home
Class 11
MATHS
lim(n rarr oo) sqrt(n)/sqrt(n+1)=...

`lim_(n rarr oo) sqrt(n)/sqrt(n+1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(n rarr oo)(sqrt(n+1)+sqrt(n+2)+.........+sqrt(2n-1))/(n^((3)/(2) ))

If f(x) is continuous in [0,1] and f((1)/(2))=1 prove that lim_(n rarr oo)f((sqrt(n))/(2sqrt(n+1)))=1

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

The value of lim_(n rarr oo)(sqrt(1)+sqrt(2)+sqrt(3)+....+2sqrt(n))/(n sqrt(n)) is

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is