Home
Class 12
MATHS
lim(x->0)(e^(2x)-1)/(3x)...

`lim_(x->0)(e^(2x)-1)/(3x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0)(e^(2x)-1)/(x) is :

lim_(x->0)(e^(x)-1)/(sqrt(4+x)-2) =

Compute lim_(x rarr0)(e^(3x)-1)/(x)

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

Evalute lim_(xrarr0)((e^(3x)-1)/(x)).

lim_(x->0) (x^2-3x+1)/(x-1)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate: (i)lim_(xrarr0)((e^(-x)-1)/(x))(ii)lim_(xrarr0)((e^(x)-e^(-x))/(x))(iii)lim_(xrarr0)((e^(x)+e^(-x)-2)/(x^(2)))

Let lim_(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim_(x to 0) (e^(2x) - 1)/(x) = L_(2) then the value of L_(1)L_(2) is

lim_(x rarr0)(e^(3x)-1)/(log(1+5x))