Home
Class 12
MATHS
If f'(x)=tan^(-1)x then f(x) is equal to...

If `f'(x)=tan^(-1)x` then `f(x)` is equal to ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=x tan^(-1)x, then f'(1) equals

Let f(x)=(x-1)/(x+1) then f(1) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x)=(1)/(1-x), then f(f(f(x))) is equal to

If f(x)=x*tan^(-1)x," then: "f'(1)=

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :

" If f(x)=(x)/(1+x) then f^(-1)(x) is equal to

If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal to: