Home
Class 12
MATHS
tan^(-1)(sqrt((a-x)/(a+x)))=(1)/(2)cos^(...

`tan^(-1)(sqrt((a-x)/(a+x)))=(1)/(2)cos^(-1)((x)/(a))`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that tan^(-1)(sqrt(x))=(1)/(2)cos^(-1)((1-x)/(1+x)),x in[0,1]

The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/(2)) w.r.t. x is

tan^(-1)((1)/(sqrt(3))(tan x)/(2))=(1)/(2)cos^(-1)((1+2cos x)/(2+cos x))

Toprove tan ^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x))

tan ^(-1)(cos sqrt(x))

Prove that: quad tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove the following: tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x in(0,1)

Is tan^(-1) (sqrt((1-x^(2))/(1+x^(2))) ) = 1/2 cos^(-1) x true ?

Write the following in the simplest form : tan ^(-1) ((sqrt(1-x^(2)))/(1+x))= 1/2 cos^(-1) x

Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x