Home
Class 11
PHYSICS
An aritifxcial satellite is moving round...

An aritifxcial satellite is moving round earth maintaining the height of 700 km. What is the horizontal velocity of. the satellite? `[R = 6400 km, g = 9.8 m//s^2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

A satellite is revolving around the earth at an altitude of 700 km. Determine the horizontal velocity of the satellite. The radius of the earth =6300km , g=9.8 m*s^(-2)

An artificial satellite circled around the earth at a distance of 3400 km. Calculate its orbital velocity and period of revolution. Radius of earth =6400 km and g=9.8 m*s^(-2) .

An artificial satellite revolves around the earth in a circular path at a distance of 3400 km from the earth's surface. Find the velocity of the artificial satellite . The radius of the =6400km, g=980 cm*s^(-2) .

An artificial satellite of mass m is moving round the earth in an orbit of radius 2R. How much work is to be done to transfer the satellite to an orbit of radius 4R ? How will the potential energy of the satellite change ? (R=Radius of earth)

An aritificial satellite of mass m is moving round the earth, in an orbit of radius 2R. How much work is to be done to transfer the satellite to an orbit of radius 4R? How will the potential energy of the satellite change? (R = Radius of earth).

An artificial satellite revolves around the earth in a circular orbit and is at a height of 300 km above the surface of the earth. Find the orbital speed and the time period of the satellite. The radius of the earth=6400 km, g=980 cm*s^(-2) .

An artificial satellite is moving in an orbit around the earth with a velocity equal to one-third the escape velocity from the surface of the earth. (ii) The satellite comes to rest in its orbit and then is allowed to fall freely on to the surface of the earth. Find the speed with which the satellite strikes the earth's surface. Given radius of earth =6400 km.

An artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of escape velocity from the earth. (ii) if the satellite is stopped suddenly in its orbit and allowed to fall freely on to the earth, find the speed with which it hits the surface of the earth. Take g=9.8m*s^(-2) and R_e=6400 km .

Calculate the kinetic energy , potential energy and total energy of a geostationary satellite of mass 100 tonne. The radius of the earth is 6400 km and the radius of the orbit of the satellite is 42400 km.