Home
Class 11
PHYSICS
The position vector of two particles of ...

The position vector of two particles of mass 10 g, 30 g are `(2 hat i + 3hat j+13hat k)` and `(2hat i +5hat j-3hat k)` respectively. Where will be its centre of mass?

Promotional Banner

Similar Questions

Explore conceptually related problems

The position vector of the points P and Q are 5 hat i+7 hat j-2 hat k and -3 hat i+3 hat j+6 hat k , respectively. Vector vec A=3 hat i- hat j+ hat k passes through point P and vector vec B=-3 hat i+2 hat j+4 hat k passes through point Q . A third vector 2 hat i+7 hat j-5 hat k intersects vectors A and Bdot Find the position vectors of points of intersection.

The position vectors of the points Pa n dQ with respect to the origin O are vec a= hat i+3 hat j-2 hat k and vec b=3 hat i- hat j-2 hat k , respectively. If M is a point on P Q , such that O M is the bisector of angleP O Q , then vec O M is a. 2( hat i- hat j+ hat k) b. 2 hat i+ hat j-2 hat k c. 2(- hat i+ hat j- hat k) d. 2( hat i+ hat j+ hat k)

Prove that point hat i +2 hat j - 3 hat k ,2 hat i - hat j + hat k and 2 hat i + 5 hat j - hat k from a triangle in space.

find the projection of 3hat i - hat j + 4hat k on 2 hat i + 3 hat j -6 hat k

(i) If the position vectors of the points A, B, C be 5hat(i)+3hat(j)+4hat(k), hat(i)+5hat(j)+hat(k) " and " -3hat(i)+7hat(j)-2hat(k) respectively, then show that the points B bisects the line-segment bar(AC) . (ii) The position vectors of the points P and Q are 5hat(i)-12hat(j)+5hat(k) " and " -4hat(i)+3hat(j)-hat(k) respectively. Find the position vectors of the trisection points of the line-segment bar(PQ) .

If the position vectors of the points P and Q are 2hat(i)+hat(k) " and " -3hat(i)-4hat(j)-5hat(k) respectively, then vector vec(OP) is -

If the position vectors of two given points A and B be 8hat(i)+3hat(j)+2hat(k) " and " 2hat(i)-5hat(j)+3hat(k) respectively, find the magnitude and direction of vec(AB) .

If vec a= 2 hat i- hat j+ hat k and vec b = - hat i+3 hat j+4 hat k ,then veca.vecb =

If the position vectors of the points A, B, C are -2hat(i)+2hat(j)+2hat(k), 2hat(i)+3hat(j)+3hat(k) " and " -hat(i)-2hat(j)+3hat(k) respectively, show that ABC is an isosceles triangle.

The , perpendicular vector on both of (3hat i +hat j + 2hat k) and (2hat i -2hat j +4hat k) is: