Home
Class 11
MATHS
Show that overset(n)underset(i=1)sum (xi...

Show that `overset(n)underset(i=1)sum (x_i - A)^2` is minimum when `A = barx`.

Promotional Banner

Topper's Solved these Questions

  • KALIDHAN INSTITUTION

    UNITED BOOK HOUSE|Exercise EXERCISE|49 Videos
  • MCQ

    UNITED BOOK HOUSE|Exercise EXERCISE|114 Videos

Similar Questions

Explore conceptually related problems

Prove that 1/n overset(n)underset(E_1)sum |x_i - A| attains, minimum when A = Median.

Find the value of overset(10)underset(i=1)sum(10xxi) .

A variable assumes the values x_1 , x_2 ,…….., x^_n with frequencies f_1 , f_2 ,………, f_n In respectively, show that overset(n)underset(i=1)sum f_i(x_i - barx) = 0 .

If x_1 , x_2 ,……. x_n are real quantities. Prove that 1/n overset(n)underset(i=1)sum x i^2 ge (1/n overset(n)underset(i=1)sum|x i|)^2

Show that: overset(1)underset(0)int (log(1+x)/(1+x^2))dx= pi/8 log 2 .

n = 10, Me(x) = 5, overset(10)underset(i=1)sum x_i = 40 , overset(10)underset(i=1)sum|x_i - 5|= 25 , overset(10)underset(i=1)sum |x_i - 4|= 27 Is the statement consistent? Give proper reason supporting your answer. Also define 71th Percentile.

The sum of the series underset(n=1)sum sin((nipi)/720) is

Let f(1)=1 and f(n)=2overset(n-1)underset(r=1)sum f( r ) . Then overset(m) underset(n=1)sum f(n) is equal to

Let x be a variable assuming the values 1, 2,……….k and let F_1 = n , F_2 ,…… F_k be the corresponding cumulative frequencies of the greater than type show that barx = 1/n overset(k)underset(i=1)sum F_i .