Home
Class 11
MATHS
If alpha, beta, gamma are the roots of x...

If `alpha, beta, gamma` are the roots of `x^3 + px + q = 0`, then `alpha beta gamma = ___________` .

A

q

B

`-q`

C

p

D

`-p`.

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • Model Test Set - 4

    UNITED BOOK HOUSE|Exercise Exercise|42 Videos
  • Model Test Set - 6

    UNITED BOOK HOUSE|Exercise Exercise|41 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of x^3+ax+b =0, then the value of alpha^3+beta^3+gamma^3

If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ther Delta=[(1/alpha,1/beta,1/gamma),(1/beta,1/gamma,1/alpha),(1/gamma,1/alpha,1/beta)] equals

If alpha , beta , gamma are the roots of the equation px^3 - qx + r = 0 , then the value of alpha + beta + gamma is

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is

If alpha,beta,gamma are the roots of the equation x^3+x+1=0 , then the value of alpha^3+beta^3+gamma^3 is.

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta -alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

If alpha,beta,gamma are the roots of a x^3+b x^2+cx+d=0 and |[alpha,beta,gamma],[beta,gamma,alpha],[gamma,alpha,beta]|=0, alpha!=beta!=gamma then find the equation whose roots are alpha+beta-gamma,beta+gamma-alpha , and gamma+alpha-beta .

if alpha, beta, gamma are roots of x^3-3x^2+3x+7=0 , then find (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)

If alpha,beta are the roots of x^2-px+1=0 and gamma is a root of x^2+px+1=0 , then (alpha+gamma)(beta+gamma) is

If alpha,beta,gamma are the roots of the equation x^3-p x+q=0, then find the cubic equation whose roots are alpha/(1+alpha),beta/(1+beta),gamma/(1+gamma) .