Home
Class 11
PHYSICS
Force constant of a weightless spring is...

Force constant of a weightless spring is `16 Nm^(-1)`. A body if mass 1 kg suspended from it is pulled down through 5 cm from its mean position and then released. The maximum kinetic energy of the body will be

Text Solution

Verified by Experts

The fprce-sonstant of the spring is:
`k = F//y`
where F is the force producing an increase y in the length of the spring.
Here, `F = 1. 0 kg xx 10 N//kg = 10 N and `
`y =2 cm = 0.02 m`
`therefore k = (10N)/(0.02 m) = 500 N//m`
The period of oscillation of the body of mass m = `(1.0kg)` supended from the speing,
`T = 2pi sqrt ((m)/(k))`
`= 2 xx 3.14 xx sqrt ((1.0)/( 500 )) = 0.28s.`
The kinetic energy of oscillation of the spring is equal to word done in pulling the spring by 10 cm (0.1m). Thus kinetic energy.
`K = (1)/(2) kx ^(2) = (1)/(2) (5000) xx (0.1) ^(2) = 2.5 J`
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-3

    ICSE|Exercise SECTION-C|9 Videos
  • SAMPLE QUESTION PAPER-3

    ICSE|Exercise SECTION-D|6 Videos
  • SAMPLE QUESTION PAPER-3

    ICSE|Exercise SECTION-D|6 Videos
  • SAMPLE QUESTION PAPER-2

    ICSE|Exercise SECTION-D|10 Videos
  • SELF ASSESSMENT PAPER 01

    ICSE|Exercise SECION- D (Answer the following ) |6 Videos

Similar Questions

Explore conceptually related problems

Force constant of a weightless spring is 16 N/m. A body of mass 1.0 kg suspended from it is pulled down through 5 cm from its mean position and the released. The maximum kinetic energy of the system (spring+body) will be (0.0x) J. Find value of x.

The force constant of a weightless spring is 16 N m^(-1) . A body of mass 1.0 kg suspended from it is pulled down through 5 cm and then released. The maximum energy of the system (spring + body) will be

A spring has a natural length of 50 cm and a force constant of 2.0 xx 10^(3) N m^(-1) . A body of mass 10 kg is suspended from it and the spring is stretched. If the body is pulled down to a length of 58 cm and released, it executes simple harmonic motion. The net force on the body when it is at its lowermost position of its oscillation is (10x) newton. Find value of x. (Take g=10m/ s^(2) )

A spring has a natural length of 50 cm and a force constant of 2.0 xx 10^(3) N m^(-1) . A body of mass 10 kg is suspended from it and the spring is stretched. If the body is pulled down to a length of 58 cm and released, it executes simple harmonic motion. The net force on the body when it is at its lowermost position of its oscillation is (10x) newton. Find value of x. (Take g=10m/ s^(2) )

A block of mass 4 kg hangs from a spring constant k=400(N)/(m) . The block is pulled down through 15 cm below and released. What is its kinetic energy when the block is 10 above the equilibrium position.?

A 10 kg metal block is attached to a spring constant 1000 Nm^(-1) . A block is displaced from equilibrium position by 10 cm and released. The maximum acceleration of the block is

A block whose mass is 2 kg is fastened on a spring whose spring constant is 100 Nm^(-1) . It is pulled to a distance of 0.1 m from over a frictionless surface and is released at t=0. Calculate the kinetic eneryg of the block when it is 0.05 m away from its mean position.

Figure shows a system consisting of a massless pulley, a spring of force constant k and a block of mass m. If the block is slightly displaced vertically down from is equilibrium position and then released, the period of its vertical oscillation is

A body of mass 1 kg suspended an ideal spring oscillates up and down. The amplitude of oscillation is 1 metre and the periodic time is 1.57 second. Determine.

The force on a body executing SHM is 4 N when the displacement from mean position is 2 cm. If amplitude of oscillation is 10 cm, then the maximum kinetic energy associated with the SHM will be