Home
Class 11
MATHS
int[(1)/(logx)-(1)/((logx)^(2))]dx=...

`int[(1)/(logx)-(1)/((logx)^(2))]dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

int(logx)^(2)dx=?

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then

Evaluate int e^x(1/logx-1/(x(logx)^2)) dx

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

int1/(x(1-logx)^(2))dx=