Home
Class 12
MATHS
lim(x->0)(cosx+asinb x)^(1/x)...

`lim_(x->0)(cosx+asinb x)^(1/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(1+(asinb x)/(cosx))^(1/x), where a,b are non zero constants is equal to :

lim_(x->0)(1/x)^(1-cosx)

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

lim_(x rarr0)(sin x+cosx)^(1/(2x))

lim_(xto0) ((cos x)^(1//2)-(cosx)^(1//3))/(sin^2x) is

(lim)_(x->\ 0)(cosx)^(cot2x) equals

Evaluate : lim_ (x -> 0 ) ((cosx - 1)) /x

Evaluate : lim_ (x -> 0 ) ((cosx - 1)) /x

solve lim_(x->0) (x^2+1-cosx)/(xsinx)

Evaluate: ("Lim")_(x->0)(1-cosx cos2x cos3x)/(x^2)