Home
Class 12
MATHS
Let a1 and a2 be two values of a for whi...

Let `a_1` and `a_2` be two values of `a` for which `f(x)= x*{ln(1+x)+ln(1-x)}/(secx-cosx) , x in (-1,0)` and `f(x)=(a^2-3a+1)x+x^2 , x in (0,oo)` is differentiable at `x=0`, then the value of `(a_1)^2+(a_2)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(1) and a_(2) be two values of a for which f(x)=x*(ln(1+x)+ln(1-x))/(sec x-cos x),x in(-1,0) and f(x)=(a^(2)-3a+1)x+x^(2),x in(0,oo) is differentiable at x=0, then the value of (a_(1))^(2)+(a_(2))^(2)

If f(x)=(ln(1+x))/x, x in (-1,oo) and f(0)=1 then f(x) is

The function f(x)=((3^(x)-1)^(2))/(sin x*ln(1+x)),x!=0, is continuous at x=0, Then the value of f(0) is

f(x)={(log(1+2ax)-log(1-bx))/(x),x!=0x=0

If cosx=a_0+a_1 x+a_2x^2+... then the value of a_2 is

The value of lim_(xrarr0)(ln(1+2x+4x^(2))+ln(1-2x+4x^(2)))/(secx-cosx) is equal to

If f(x)={(log((1+x/b)/(1-x/a))/x,,xlt0),(k,,x=0),((cos^2x-sin^2x-1)/(sqrt(x^2+1)-1),,x gt0):} is continuous at x=0 then the value of 1/a+1/b+4/k is

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

If f(x) is continuous at x=0 , where f(x)=(log(1+x^(2))-log(1-x^(2)))/(sec x- cos x) , for x !=0 , then f(0)=

Let f(x)={(1)/(x ln2)-(1)/(2^(x)-1)-(1)/(2),x!=0 and 0,x=0