Home
Class 12
CHEMISTRY
For the chemical reaction N(2)(g)+3H(2...

For the chemical reaction
`N_(2)(g)+3H_(2)(g)hArr2NH_(3)(g)`
The correct option is:
(a) `3(d[H_(2)])/(dt)=2(d[NH_(3)])/(dt)`
(b) `-(1)/(3)(d[H_(2)])/(dt)=-(1)/(2)(d[NH_(3)])/(dt)`
(c) `-(d[N_(2)])/(dt)=2(d[NH_(3)])/(dt)`
(d) `-(d[N_(2)])/(dt)=(1)/(2)(d[NH_(3)])/(dt)`

A

`3(d[H_(2)])/(dt)=2(d[NH_(3)])/(dt)`

B

`-(1)/(3)(d[H_(2)])/(dt)=-(1)/(2)(d[NH_(3)])/(dt)`

C

`-(d[N_(2)])/(dt)=2(d[NH_(3)])/(dt)`

D

`-(d[N_(2)])/(dt)=(1)/(2)(d[NH_(3)])/(dt)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given chemical reaction: \[ N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \] From this reaction, we can derive the rate expressions for the reactants and products. ### Step 1: Write the rate expressions For a general reaction of the form: \[ aA + bB \rightleftharpoons cC + dD \] The rate of reaction can be expressed in terms of the change in concentration of the reactants and products: - For reactant A: \[ \text{Rate} = -\frac{1}{a} \frac{d[A]}{dt} \] - For reactant B: \[ \text{Rate} = -\frac{1}{b} \frac{d[B]}{dt} \] - For product C: \[ \text{Rate} = \frac{1}{c} \frac{d[C]}{dt} \] - For product D: \[ \text{Rate} = \frac{1}{d} \frac{d[D]}{dt} \] ### Step 2: Apply it to the given reaction For the reaction \( N_2 + 3H_2 \rightleftharpoons 2NH_3 \): - The rate in terms of \( N_2 \) is: \[ \text{Rate} = -\frac{d[N_2]}{dt} \] - The rate in terms of \( H_2 \) is: \[ \text{Rate} = -\frac{1}{3} \frac{d[H_2]}{dt} \] - The rate in terms of \( NH_3 \) is: \[ \text{Rate} = \frac{1}{2} \frac{d[NH_3]}{dt} \] ### Step 3: Set the rates equal to each other From the above expressions, we can equate the rates: \[ -\frac{d[N_2]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt} \] ### Step 4: Rearranging the equations 1. From \( -\frac{d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt} \): \[ -\frac{d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt} \implies -d[N_2] = \frac{1}{2} d[NH_3] \] 2. From \( -\frac{1}{3} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt} \): \[ -\frac{d[H_2]}{dt} = \frac{3}{2} \frac{d[NH_3]}{dt} \] ### Step 5: Evaluate the options Now we can evaluate the options provided: (a) \( 3 \frac{d[H_2]}{dt} = 2 \frac{d[NH_3]}{dt} \) - **Incorrect** (b) \( -\frac{1}{3} \frac{d[H_2]}{dt} = -\frac{1}{2} \frac{d[NH_3]}{dt} \) - **Incorrect** (c) \( -\frac{d[N_2]}{dt} = 2 \frac{d[NH_3]}{dt} \) - **Incorrect** (d) \( -\frac{d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt} \) - **Correct** Thus, the correct option is (d).

To solve the problem, we need to analyze the given chemical reaction: \[ N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \] From this reaction, we can derive the rate expressions for the reactants and products. ### Step 1: Write the rate expressions ...
Promotional Banner

Similar Questions

Explore conceptually related problems

For the reaction N_(2)(g) + 3H_(2)(g) hArr 2NH_(3)(g), DeltaH=?

For the reaction, N_(2)(g)+3H_(2)(g) hArr 2NH_(3)(g) , the units of K_(p) are …………

For the reaction : N_(2(g))+3H_(2(g))hArr2NH_(3(g)) , DeltaH=-ve , the correct statement is :

For the reaction N_(2)(g) + 3H_(2)(g) rarr 2NH_(2)(g) Which of the following is correct?

For the reaction 2NH_(3)(g) hArr N_(2)(g)+3H_(2)(g)-x kcal , which is correct?

For this reaction N_(2(g))+3H_(2(g))to2NH_(3(g)) The relation between (d(NH_(3)))/(dt) and -(d(H_(2)))/(dt) is :-

For the reaction, N_2[g] + 3H_2[g] hArr 2NH_3[g] , Delta H = …

N_(2)+3H_(2) to NH_(3)

N_(2)+3H_(2) to NH_(3)

Mechanism of the reaction is: What is (a) (-d[A])/(dt) , (b) (d[A_(1)])/(dt)