Home
Class 12
PHYSICS
Two bodies of mass 1 kg and 3 kg have po...

Two bodies of mass `1 kg` and `3 kg` have position vectors `hat i+ 2 hat j + hat k` and `- 3 hat i- 2 hat j+ hat k`, respectively. The centre of mass of this system has a position vector.

A

`-2 hat(i)+2hat(k)`

B

`-2hat(i)-hat(j)+hat(k)`

C

`2hat(i)-hat(j)-2hat(k)`

D

`-hat(i)+hat(j)+hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the position vector of the center of mass of the two bodies, we can use the formula for the center of mass (CM) given by: \[ \vec{R}_{CM} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2} \] where: - \(m_1\) and \(m_2\) are the masses of the two bodies, - \(\vec{r}_1\) and \(\vec{r}_2\) are the position vectors of the two bodies. ### Step 1: Identify the masses and position vectors Given: - Mass \(m_1 = 1 \, \text{kg}\) - Position vector \(\vec{r}_1 = \hat{i} + 2\hat{j} + \hat{k}\) - Mass \(m_2 = 3 \, \text{kg}\) - Position vector \(\vec{r}_2 = -3\hat{i} - 2\hat{j} + \hat{k}\) ### Step 2: Substitute the values into the center of mass formula Now, we substitute the values into the formula: \[ \vec{R}_{CM} = \frac{1 \cdot (\hat{i} + 2\hat{j} + \hat{k}) + 3 \cdot (-3\hat{i} - 2\hat{j} + \hat{k})}{1 + 3} \] ### Step 3: Calculate the numerator Calculating the numerator: 1. For \(m_1 \vec{r}_1\): \[ 1 \cdot (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} + 2\hat{j} + \hat{k} \] 2. For \(m_2 \vec{r}_2\): \[ 3 \cdot (-3\hat{i} - 2\hat{j} + \hat{k}) = -9\hat{i} - 6\hat{j} + 3\hat{k} \] Now, add these two results together: \[ \hat{i} + 2\hat{j} + \hat{k} + (-9\hat{i} - 6\hat{j} + 3\hat{k}) = (\hat{i} - 9\hat{i}) + (2\hat{j} - 6\hat{j}) + (\hat{k} + 3\hat{k}) \] \[ = -8\hat{i} - 4\hat{j} + 4\hat{k} \] ### Step 4: Calculate the denominator The denominator is: \[ m_1 + m_2 = 1 + 3 = 4 \] ### Step 5: Divide the numerator by the denominator Now, we can find the center of mass position vector: \[ \vec{R}_{CM} = \frac{-8\hat{i} - 4\hat{j} + 4\hat{k}}{4} \] \[ = -2\hat{i} - \hat{j} + \hat{k} \] ### Final Answer Thus, the position vector of the center of mass is: \[ \vec{R}_{CM} = -2\hat{i} - \hat{j} + \hat{k} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Two bodies of 6kg and 4kg masses have their velocity 5hati - 2 hat j + 10 hat k and 10hat i - 2 hat j + 5 hat k respectively. Then, the velocity of their centre of mass is

Find the angle between the vectors hat i-2 hat j+3k and 3 hat i-2 hat j+k

Find the projection of vector hat i+3 hat j+7 hat k on the vector 7 hat i- hat j+8 hat kdot

Find the projection of the vector hat i+3 hat j+7 hat k on the vector 7 hat i- hat j+8 hat k

Particles of masses 100 and 300 gram have position vectors (2hat(i)+5hat(j)+13hat(k)) and (-6hat(i)+4hat(j)+2hat(k)) . Position vector of their centre of mass is

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are hat i+2 hat j- hat k and - hat i+ hat j+ hat k respectively, in the ratio 2 : 1(i) internally (ii) externally

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are hat i+2 hat j- hat k and - hat i+ hat j+ hat k respectively, in the ratio 2 : 1(i) internally (ii) externally

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are hat i+2 hat j- hat k and - hat i+ hat j+ hat k respectively, in the ratio 2 : 1 (i) internally (ii) externally

Find the image of the point having position vector hat i+2 hat j+4 hat k in the plane vec r.(2 hat i- hat j+ hat k)+3=0.