Home
Class 12
PHYSICS
Monochromatic light of wavelength 667 nm...

Monochromatic light of wavelength `667 nm` is produced by a helium neon laser . The power emitted is `9 mW` . The number of photons arriving per second on the average at a target irradiated by this beam is

A

`9 xx 10^(17)`

B

`3 xx 10^(16)`

C

`9 xx 10^(15)`

D

`3 xx 10^(19)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of photons arriving per second at a target irradiated by a helium-neon laser emitting monochromatic light of wavelength 667 nm and power 9 mW, we can follow these steps: ### Step 1: Convert the power from milliwatts to watts The power \( P \) is given as 9 mW. We can convert this to watts: \[ P = 9 \, \text{mW} = 9 \times 10^{-3} \, \text{W} \] ### Step 2: Convert the wavelength from nanometers to meters The wavelength \( \lambda \) is given as 667 nm. We can convert this to meters: \[ \lambda = 667 \, \text{nm} = 667 \times 10^{-9} \, \text{m} \] ### Step 3: Calculate the energy of a single photon The energy \( E \) of a single photon can be calculated using the formula: \[ E = \frac{hc}{\lambda} \] Where: - \( h \) (Planck's constant) = \( 6.626 \times 10^{-34} \, \text{Js} \) - \( c \) (speed of light) = \( 3 \times 10^8 \, \text{m/s} \) Substituting the values: \[ E = \frac{(6.626 \times 10^{-34} \, \text{Js}) \times (3 \times 10^8 \, \text{m/s})}{667 \times 10^{-9} \, \text{m}} \] Calculating this gives: \[ E \approx 2.98 \times 10^{-19} \, \text{J} \] ### Step 4: Calculate the number of photons per second The number of photons \( n \) arriving per second can be calculated using the formula: \[ n = \frac{P}{E} \] Substituting the values: \[ n = \frac{9 \times 10^{-3} \, \text{W}}{2.98 \times 10^{-19} \, \text{J}} \] Calculating this gives: \[ n \approx 3.02 \times 10^{16} \, \text{photons/s} \] ### Final Answer The number of photons arriving per second at the target is approximately: \[ \boxed{3.02 \times 10^{16}} \, \text{photons/s} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Monochromatic light of wavelength 632.8nm is produced by a helium-neon laser. The power emitted is 9.42 mW . (a) Find the energy and momentum of each photon in the light beam. (b) How many photons per second, on the average, arrive at a target irradiated by this beam? (Assume the beam to have uniform cross-section which is less than the target area). (c) How fast does a hydrogen atom have to travel in order to have the same momentum as that of the photon. h=6.663xx10^(-34)Js,1 a.m.u. =1.66xx10^(-27)kg .

Monochromatic light of frequency 6xx10^(14)Hz is produced by a laser. The power emitted is 2xx10^(-3) W. The number of photons emitted per second is ("Given h"=6.63xx10^(-34)Js)

(i) Mono chromatic light of frequency 6.0xx10^(14)Hz is produced by a laser. The power emitted is 2.0xx10^(-3)W . Estimate the number of photons emitted per second on an average by the source. (ii) Draw a plot showing the variation of photoelectric current versus the intensity of incident radiation on a given photosensitive surface.

Monochromatic light of frequency 6.0xx10^(14)Hz is produced by a laser. The power emitted is 2xx10^(-3)W . The number of photons emitted, on an average, by the source per second is nxx10^(15) where n is an integer. Find the value of n?

A monochromatic light of frequency 3xx10^(14)Hz is produced by a LASER, emits the power of 3xx10^(-3) W. Find how many number of photons are emitted per second.

Monochromatic light of frequency 6.0xx10^(14)Hz is produced by a laser. The power emitted is 2.0xx10^-3W , (a) What is the energy of a photon in the light beam? (b) How many photons per second, on the average, are emitted by the source? Given h=6.63xx10^(-34) Js

A parallel beam of monochromatic light of wavelength 663 nm is incident on a totally reflecting plane mirror. The angle of incidence is 60^@ and the number of photons striking the mirror per second is 1.0 xx 10^19 . Calculate the force exerted by the light beam on the mirror.

A parallel beam of monochromatic light of wavelength 663 nm is incident on a totally reflection plane mirror. The angle of incidence is 60^@ and the number of photons striking the mirror per second is 1.0xx10^19 . Calculate the force exerted by the light beam on the mirror.

A 200 W bulb emits monochromatic light of wavelenght 1400 A and only 10% of the energy is emitted as light. The number of photons emitted by the bulb per second will be

A parellel beam of monochromatic light of wavelength 500 nm is incident normally on a perfectly absorbing surface. The power through any cross section of the beam is 10 W. Find (a) the number of photons absorbed per second by the surface and (b) the force exerted by the light beam on the surface.