Home
Class 12
CHEMISTRY
If E(Fe^(2+))^(@)//Fe = -0.441 V and E...

If `E_(Fe^(2+))^(@)//Fe = -0.441 V`
and `E_(Fe^(3+))^(@)//Fe^(2+) = 0.771 V`
The standard `EMF` of the reaction
`Fe+2Fe^(3+) rarr 3Fe^(2+)`
will be:

A

0.111 V

B

0.330 V

C

1.653 V

D

1.212 V

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard EMF of the reaction \( \text{Fe} + 2 \text{Fe}^{3+} \rightarrow 3 \text{Fe}^{2+} \), we can follow these steps: ### Step 1: Identify the half-reactions and their standard reduction potentials. 1. The first half-reaction involves the reduction of \( \text{Fe}^{3+} \) to \( \text{Fe}^{2+} \): \[ \text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \quad (E^\circ = 0.771 \, \text{V}) \] 2. The second half-reaction involves the oxidation of \( \text{Fe} \) to \( \text{Fe}^{2+} \): \[ \text{Fe}^{2+} + 2e^- \rightarrow \text{Fe} \quad (E^\circ = -0.441 \, \text{V}) \] ### Step 2: Adjust the half-reactions for the overall reaction. To combine these half-reactions, we need to multiply the first half-reaction by 2 to match the number of electrons transferred in the second half-reaction: - Multiply the first half-reaction by 2: \[ 2 \text{Fe}^{3+} + 2e^- \rightarrow 2 \text{Fe}^{2+} \quad (E^\circ = 0.771 \, \text{V}) \] ### Step 3: Reverse the second half-reaction. Since we are looking for the oxidation of \( \text{Fe} \), we reverse the second half-reaction: \[ \text{Fe} \rightarrow \text{Fe}^{2+} + 2e^- \quad (E^\circ = +0.441 \, \text{V}) \] ### Step 4: Combine the half-reactions. Now we can add the two half-reactions together: \[ 2 \text{Fe}^{3+} + 2e^- + \text{Fe} \rightarrow 2 \text{Fe}^{2+} + 2e^- \] Simplifying gives: \[ 2 \text{Fe}^{3+} + \text{Fe} \rightarrow 3 \text{Fe}^{2+} \] ### Step 5: Calculate the standard EMF of the overall reaction. The standard EMF of the overall reaction can be calculated using the formula: \[ E^\circ_{\text{cell}} = E^\circ_{\text{reduction}} - E^\circ_{\text{oxidation}} \] Substituting the values: \[ E^\circ_{\text{cell}} = 0.771 \, \text{V} - (-0.441 \, \text{V}) = 0.771 \, \text{V} + 0.441 \, \text{V} = 1.212 \, \text{V} \] ### Final Answer: The standard EMF of the reaction \( \text{Fe} + 2 \text{Fe}^{3+} \rightarrow 3 \text{Fe}^{2+} \) is **1.212 V**. ---

To find the standard EMF of the reaction \( \text{Fe} + 2 \text{Fe}^{3+} \rightarrow 3 \text{Fe}^{2+} \), we can follow these steps: ### Step 1: Identify the half-reactions and their standard reduction potentials. 1. The first half-reaction involves the reduction of \( \text{Fe}^{3+} \) to \( \text{Fe}^{2+} \): \[ \text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \quad (E^\circ = 0.771 \, \text{V}) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Reduction potential for the following half-cell reaction are Zn rarr Zn^(2+)+2e^(-),E_(Zn^(2+)//Zn)^(@) = -0.76V Fe rarr Fe^(2+)+2e^(-),E_(Fe^(2+)//Fe)^(@) = -0.44V The emf for the cell reaction Fe^(2+) + Zn rarr Zn^(2+)+Fe will be

Given electrode potentials: Fe^(3+) + e^(-) rarr Fe^(2+) : E^(o) =0.771 V and I_(2) 2e^(-) rarr 2I^(-), E^(o) = 0.556 V then E^(o) for the cell reaction 2 Fe^(3+) 2I ^(-) rarr 2 Fe^(2+) + l_(2) will be:

Standard oxidation potential for the following half-cell reactions are [Fe(s) rarr Fe^(2+)(aq) + 2e^(-) E^3 = +0.44 V] [Co(s)rarr Co^(3+) (aq) + 3e^(-) E^0 = - 1.81 V The standard emf of the cell reaction [3Fe(s) +2Co^(3+) (aq)rarr 3Fe^(2+) (aq) + 2Co(s)] , will be

E^(@) of Fe^(2 +) //Fe = - 0.44 V, E^(@) of Cu //Cu^(2+) = -0.34 V . Then in the cell

Consider the following E^(@) values E^(o)""_(Fe^(3+)//Fe^(2+))= +0.77 V" "E^(o)""_(Sn^(2+)//Sn)= 0.14V Under standard conditions the EMF for the reaction Sn(s) + 2Fe^(3+) (aq) rarr 2Fe^(2+)(aq)+Sn^(2+)(aq) is :

Given : E_(Fe^(3+)//Fe)^(@) = -0.036V, E_(FE^(2+)//Fe)^(@)= -0.439V . The value of electrode potential for the change, Fe_(aq)^(3+) + e^(-)rightarrow Fe^(2+) (aq) will be :

Consider the following E^(@) values E^(@) values E_(Fe^(3+)//Fe^(2+))^(@)= 0.77v , E_(Sn^(2+)//Sn)^(@) = -0.14 under standard condition the potential for the reaction Sn_(s)+ 2Fe^(3+)(aq)rightarrow 2Fe^(2+)(aq) + Sn^(2+) (aq) is :

Consider the following E^@ values . E_(Fe^(3+)//Fe^(2+)^@ = + 0.77 V , E_(Sn^(2+)//Sn)^@=- 0.14 V The E_(cell)^@ for the reaction , Sn (s) + 2Fe^(3+)(aq) rarr 2 Fe^(2+)(aq)+ Sn^(2+)(aq) is ? (a) -0.58 V (b) -0.30 V (c) +0.30V (d) +0.58 V

Consider this reaction Fe^( + + ) undersetlarr to Fe^( + + +) + e^-

The standard oxidation potentials, , for the half reactions are as follows : Zn rightarrow Zn^(2+) + 2e^(-) , E^(@) = +0.76V Fe rightarrow Fe^(2+)+ 2e^(-), E^(@) = + 0.41 V The EMF for the cell reaction, Fe^(2+) + Zn rightarrow Zn^(2+) + Fe