Home
Class 12
CHEMISTRY
If K(1) and K(2) are respective equilib...

If `K_(1)` and `K_(2)` are respective equilibrium constants for two reactions `:`
`XeF_(6)(g) +H_(2)O hArr XeOF_(4)(g) +2HF_(g)`
`XeO_(4)(g)+XeF_(6)(g)hArr XeOF_(4)(g)+XeO_(3)F_(2)(g)`
Then equilibrium constant for the reaction
`XeO_(4)(g)+2HF(g) hArr XeO_(3)F_(2)(g)+H_(2)O(g)` will be

A

`K_1//(K_2)^2`

B

`K_1.K_2`

C

`K_1//K_2`

D

`K_2//K_1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant \( K_3 \) for the reaction \[ \text{XeO}_4(g) + 2 \text{HF}(g) \rightleftharpoons \text{XeO}_3\text{F}_2(g) + \text{H}_2\text{O}(g), \] we will use the equilibrium constants \( K_1 \) and \( K_2 \) from the given reactions. ### Step 1: Write the expressions for \( K_1 \) and \( K_2 \) For the first reaction: \[ \text{XeF}_6(g) + \text{H}_2\text{O}(g) \rightleftharpoons \text{XeOF}_4(g) + 2 \text{HF}(g) \] The equilibrium constant \( K_1 \) is given by: \[ K_1 = \frac{[\text{XeOF}_4][\text{HF}]^2}{[\text{XeF}_6][\text{H}_2\text{O}]} \] For the second reaction: \[ \text{XeO}_4(g) + \text{XeF}_6(g) \rightleftharpoons \text{XeOF}_4(g) + \text{XeO}_3\text{F}_2(g) \] The equilibrium constant \( K_2 \) is given by: \[ K_2 = \frac{[\text{XeOF}_4][\text{XeO}_3\text{F}_2]}{[\text{XeO}_4][\text{XeF}_6]} \] ### Step 2: Write the expression for \( K_3 \) For the reaction we are interested in: \[ \text{XeO}_4(g) + 2 \text{HF}(g) \rightleftharpoons \text{XeO}_3\text{F}_2(g) + \text{H}_2\text{O}(g) \] The equilibrium constant \( K_3 \) is given by: \[ K_3 = \frac{[\text{XeO}_3\text{F}_2][\text{H}_2\text{O}]}{[\text{XeO}_4][\text{HF}]^2} \] ### Step 3: Relate \( K_3 \) to \( K_1 \) and \( K_2 \) To express \( K_3 \) in terms of \( K_1 \) and \( K_2 \), we can manipulate the first and second reactions. 1. **Reverse the first reaction** to express \( \text{XeF}_6 \) and \( \text{H}_2\text{O} \) in terms of products: \[ \text{XeOF}_4(g) + 2 \text{HF}(g) \rightleftharpoons \text{XeF}_6(g) + \text{H}_2\text{O}(g) \] The equilibrium constant for this reversed reaction is: \[ K' = \frac{[\text{XeF}_6][\text{H}_2\text{O}]}{[\text{XeOF}_4][\text{HF}]^2} = \frac{1}{K_1} \] 2. **Add the reversed first reaction to the second reaction**: \[ \text{XeO}_4(g) + \text{XeF}_6(g) \rightleftharpoons \text{XeOF}_4(g) + \text{XeO}_3\text{F}_2(g) \] This gives: \[ \text{XeO}_4(g) + 2 \text{HF}(g) \rightleftharpoons \text{XeO}_3\text{F}_2(g) + \text{H}_2\text{O}(g) \] ### Step 4: Combine the constants The equilibrium constant for the overall reaction can be expressed as: \[ K_3 = K_2 \cdot K' \] Substituting \( K' = \frac{1}{K_1} \): \[ K_3 = K_2 \cdot \frac{1}{K_1} = \frac{K_2}{K_1} \] ### Final Answer Thus, the equilibrium constant \( K_3 \) for the reaction \[ \text{XeO}_4(g) + 2 \text{HF}(g) \rightleftharpoons \text{XeO}_3\text{F}_2(g) + \text{H}_2\text{O}(g) \] is \[ K_3 = \frac{K_2}{K_1}. \]

To find the equilibrium constant \( K_3 \) for the reaction \[ \text{XeO}_4(g) + 2 \text{HF}(g) \rightleftharpoons \text{XeO}_3\text{F}_2(g) + \text{H}_2\text{O}(g), \] we will use the equilibrium constants \( K_1 \) and \( K_2 \) from the given reactions. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The equilibrium constant K_(p) for the reaction H_(2)(g)+I_(2)(g) hArr 2HI(g) changes if:

Unit of equilibrium constant K_p for the reaction PCl_5(g) hArr PCl_3(g)+ Cl_2(g) is

For the reaction CO(g)+(1)/(2) O_(2)(g) hArr CO_(2)(g),K_(p)//K_(c) is

The equilibrium constant of the following reactions at 400 K are given: 2H_(2)O(g) hArr 2H_(2)(g)+O_(2)(g), K_(1)=3.0xx10^(-13) 2CO_(2)(g) hArr 2CO(g)+O_(2)(g), K_(2)=2xx10^(-12) Then, the equilibrium constant K for the reaction H_(2)(g)+CO_(2)(g) hArr CO(g)+H_(2)O(g) is

Write the equilibrium constant expressions for the following reactions. N_2 O_4 g hArr 2NO_2 (g)

K_(1) and K_(2) are equilibrium constants for reaction (i) and (ii) N_(2)(g)+O_(2)(g) hArr 2NO(g) …(i) NO(g) hArr 1//2 N_(2)(g)+1//2O_(2)(g) …(ii) then,

K_(1) and K_(2) are equilibrium constants for reaction (i) and (ii) N_(2)(g)+O_(2)(g) hArr 2NO(g) …(i) NO(g) hArr 1//2 N_(2)(g)+1//2O_(2)(g) …(ii) then,

Write the equilibrium constant expression for the following reactions : CH_4 (g) + 2O_2 (g)hArr CO_2(g)+ 2H_2O (g)

Write the equilibrium constant expressions for the following reactions. N_2(g) +O_2(g)hArr 2NO(g)

Write the equilibrium constant expression for the following reactions : 2SO_3(g)hArr 2SO_2(g) +O_2(g)