Home
Class 12
CHEMISTRY
On the basic of the following Delta(r)G^...

On the basic of the following `Delta_(r)G^(Theta)` values at `1073K`:
`S_(1)(s) +2O_(2)(g) rarr 2SO_(2)(g) Delta_(r)G^(Theta) =- 544 kJ mol^(-1)`
`2Zn(s) +O_(2)(g) rarr 2ZnO(s) Delta_(r)G^(Theta) =- 480 kJ mol^(-1)`
`2Zn(s) +S_(2)(s) rarr 2ZnS(s) Delta_(r)G^(Theta) =- 293 KJ mol^(-1)`
Show that roasting of zinc sulphide to zinc oxide is a spontaneous process.

A

`-357 KJ`

B

`-731 KJ`

C

`-773 KJ`

D

`-229 KJ`

Text Solution

AI Generated Solution

The correct Answer is:
To show that the roasting of zinc sulfide (ZnS) to zinc oxide (ZnO) is a spontaneous process, we will use the provided Gibbs free energy change (ΔG) values for the relevant reactions. A spontaneous process occurs when the change in Gibbs free energy (ΔG) is negative. ### Step-by-Step Solution: 1. **Write the reactions and their ΔG values:** - Reaction 1: \( S_2(s) + 2O_2(g) \rightarrow 2SO_2(g) \) \( \Delta_rG^\Theta = -544 \, \text{kJ/mol} \) - Reaction 2: \( 2Zn(s) + O_2(g) \rightarrow 2ZnO(s) \) \( \Delta_rG^\Theta = -480 \, \text{kJ/mol} \) - Reaction 3: \( 2Zn(s) + S_2(s) \rightarrow 2ZnS(s) \) \( \Delta_rG^\Theta = -293 \, \text{kJ/mol} \) 2. **Reverse Reaction 3:** To find the ΔG for the conversion of ZnS to Zn and S2, we reverse Reaction 3: \[ 2ZnS(s) \rightarrow 2Zn(s) + S_2(s) \Delta_rG^\Theta = +293 \, \text{kJ/mol} \] 3. **Combine the reversed Reaction 3 with Reaction 2:** Now, we add the reversed Reaction 3 and Reaction 2: \[ 2ZnS(s) + O_2(g) \rightarrow 2ZnO(s) + S_2(s) \] The ΔG for this combined reaction is: \[ \Delta G = \Delta G_{(reversed \, Reaction \, 3)} + \Delta G_{(Reaction \, 2)} \] \[ \Delta G = +293 \, \text{kJ/mol} + (-480 \, \text{kJ/mol}) = -187 \, \text{kJ/mol} \] 4. **Add Reaction 1 to the combined reaction:** Next, we add Reaction 1 to the combined reaction: \[ S_2(s) + 2O_2(g) \rightarrow 2SO_2(g) \Delta_rG^\Theta = -544 \, \text{kJ/mol} \] The overall reaction becomes: \[ 2ZnS(s) + 2O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g) \] The total ΔG for this overall reaction is: \[ \Delta G_{total} = -187 \, \text{kJ/mol} + (-544 \, \text{kJ/mol}) = -731 \, \text{kJ/mol} \] 5. **Conclusion:** Since the overall ΔG for the roasting of zinc sulfide to zinc oxide is \(-731 \, \text{kJ/mol}\), which is negative, we conclude that the process is spontaneous.

To show that the roasting of zinc sulfide (ZnS) to zinc oxide (ZnO) is a spontaneous process, we will use the provided Gibbs free energy change (ΔG) values for the relevant reactions. A spontaneous process occurs when the change in Gibbs free energy (ΔG) is negative. ### Step-by-Step Solution: 1. **Write the reactions and their ΔG values:** - Reaction 1: \( S_2(s) + 2O_2(g) \rightarrow 2SO_2(g) \) \( \Delta_rG^\Theta = -544 \, \text{kJ/mol} \) - Reaction 2: \( 2Zn(s) + O_2(g) \rightarrow 2ZnO(s) \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

For the system S (s) + O_(2)(g) rarr SO_(2)(g) ?

The standard Gibbs energy change value (Delta_(r)G^(Theta)) at 1773K are given for the following reactions: 4Fe +3O_(2) rarr 2Fe_(2)O_(3), Delta_(r)G^(Theta) = - 1487 kJ mol^(-1) 4AI +3O_(2) rarr 2AI_(2)O_(3),Delta_(r)G^(Theta) =- 22500 kJ mol^(-1) 2CO +O_(2) rarr 2CO_(2),Delta_(r)G^(Theta) =- 515 kJ mol^(-1) Find out the possibility of reducing Fe_(2)O_(3) and AI_(2)O_(3) with CO at this temperature.

Comment on the thermodynamic stability of NO(g) , given 1/2N_(2)(g)+1/2O_(2)(g)rarr NO(g), Delta_(r)H^(Θ)=90 kJ mol^(-1) NO(g)+1/2O_(2)(g) rarr NO_(2)(g), Delta_(r)H^(Θ)=-74 kJ mol^(-1)

Consider the reaction: 4NH_(3)(g) +5O_(2)(g) rarr 4NO(g) +6H_(2)O(l) DeltaG^(Theta) =- 1010.5 kJ Calculate Delta_(f)G^(Theta) [NO(g)] if Delta_(f)G^(Theta) (NH_(3)) = -16.6 kJ mol^(-1) and Delta_(f)G^(Theta) [H_(2)O(l)] =- 237.2 kJ mol^(-1) .

From the data at 25^(@)C : Fe_(2)O_(3)(s) +3C_(("graphite")) rarr 2Fe(s) + 3CO(g), DeltaH^(Theta) = 492.0 kJ mol^(-1) FeO(s) +C_(("graphite")) rarr Fe(s) CO(g), DeltaH^(Theta) = 155.0 kJ mol^(-1) C_(("graphite")) +O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 393.0 kJ mol^(-1) CO(g)+(1)/(2)O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 282.0 kJ mol^(-1) Calculate the standard heat of formation of FeO(s) and Fe_(2)O_(3)(s) .

At 1000^(@)C , Zn_((s)) +(1)/(2)O_(2(g)) to ZnO_((s)), DeltaG^(@)=-360 KJ "mol"^(-1) C_((s)) + (1)/(2)O_(2(g)) to CO_((g)),DeltaG^(@) =-460 KJ "mol"^(-1) The correct statement is

Using the following thermochemical equations : S("rhombic") + 3/2 O_(2)(g) rarr SO_(3)(g), " "Delta H = - 2x kJ mol^(-1) II. SO_(2)(g) + 1/2 O_(2)(g) rarr SO_(3)(g), " "Delta H = -Y kJ mol^(-1) Find out the heat of formation of SO_(2)(g) in kJ mol^(-1) .

Calculate enthalpy of formation of methane (CH_4) from the following data : (i) C(s) + O_(2)(g) to CO_(2) (g) , Delta_rH^(@) = -393.5 KJ mol^(-1) (ii) H_2(g) + 1/2 O_(2)(g) to H_(2)O(l) , Deta_r H^(@) = -285.5 kJ mol^(-1) (iii) CH_(4)(g) + 2O_(2)(g) to CO_(2)(g) + 2H_(2)O(l), Delta_(r)H^(@) = -890.3 kJ mol^(-1) .

Given: i. 2Fe(s) +(3)/(2)O_(2)(g) rarr Fe_(2)O_(3)(s), DeltaH^(Theta) =- 193.4 kJ ii. Mg(s) +(1)/(2)O_(2)(g) rarr MgO(s), DeltaH^(Theta) =- 140.2kJ What is DeltaH^(Theta) of the reaction? 3Mg +Fe_(2)O_(3)rarr 3MgO +2Fe

Calculate DeltaG^(Theta) for the following reaction at 298K: CO(g) +((1)/(2))O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 282.84 kJ Given, S_(CO_(2))^(Theta)=213.8 J K^(-1) mol^(-1), S_(CO(g))^(Theta)= 197.9 J K^(-1) mol^(-1), S_(O_(2))^(Theta)=205.0 J K^(-1)mol^(-1) ,