Home
Class 12
PHYSICS
If vec(F ) = (60 hat(i) + 15 hat(j) - 3 ...

If `vec(F ) = (60 hat(i) + 15 hat(j) - 3 hat(k)) N` and `vec(V) = (2 hat(i) - 4 hat(j) + 5 hat(k))` m/s, then instantaneous power is:

A

195 watt

B

45 watt

C

75 watt

D

100 watt

Text Solution

AI Generated Solution

The correct Answer is:
To find the instantaneous power given the force and velocity vectors, we can use the formula for power, which is the dot product of the force vector \(\vec{F}\) and the velocity vector \(\vec{V}\). Given: \[ \vec{F} = 60 \hat{i} + 15 \hat{j} - 3 \hat{k} \quad \text{(in Newtons)} \] \[ \vec{V} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} \quad \text{(in m/s)} \] ### Step 1: Calculate the dot product \(\vec{F} \cdot \vec{V}\) The dot product of two vectors \(\vec{A} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\) and \(\vec{B} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}\) is given by: \[ \vec{A} \cdot \vec{B} = a_1 b_1 + a_2 b_2 + a_3 b_3 \] Applying this to our vectors: \[ \vec{F} \cdot \vec{V} = (60)(2) + (15)(-4) + (-3)(5) \] ### Step 2: Perform the multiplication for each component Calculating each term: - For the \(\hat{i}\) components: \(60 \times 2 = 120\) - For the \(\hat{j}\) components: \(15 \times -4 = -60\) - For the \(\hat{k}\) components: \(-3 \times 5 = -15\) ### Step 3: Sum the results of the dot product Now, we sum these results: \[ \vec{F} \cdot \vec{V} = 120 - 60 - 15 \] ### Step 4: Calculate the final value Calculating the sum: \[ 120 - 60 = 60 \] \[ 60 - 15 = 45 \] ### Conclusion Thus, the instantaneous power is: \[ P = 45 \text{ watts} \] ### Final Answer The instantaneous power is \(45 \text{ watts}\). ---

To find the instantaneous power given the force and velocity vectors, we can use the formula for power, which is the dot product of the force vector \(\vec{F}\) and the velocity vector \(\vec{V}\). Given: \[ \vec{F} = 60 \hat{i} + 15 \hat{j} - 3 \hat{k} \quad \text{(in Newtons)} \] \[ \vec{V} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} \quad \text{(in m/s)} ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Knowledge Check

  • If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

    A
    `(pi)/(2)`
    B
    `(pi)/(2)`
    C
    `(pi)/(6)`
    D
    `pi`
  • If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

    A
    3
    B
    4
    C
    5
    D
    1
  • If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j) + hat(k)) =1 , then vec(a) is equal to

    A
    `vec(0)`
    B
    `hat(i)`
    C
    `hat(j)`
    D
    `hat(i) + hat(j) + hat(k)`
  • Similar Questions

    Explore conceptually related problems

    If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

    Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

    If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

    If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for