Home
Class 12
PHYSICS
If |vecA+vecB|=|vecA|+|vecB|, then angle...

If `|vecA+vecB|=|vecA|+|vecB|`, then angle between `vecA` and `vecB` will be

A

`90^@`

B

`120^@`

C

`0^@`

D

`60^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given condition: **Given:** \(|\vec{A} + \vec{B}| = |\vec{A}| + |\vec{B}|\) This condition implies that the resultant vector formed by adding vectors \(\vec{A}\) and \(\vec{B}\) has the same magnitude as the sum of the magnitudes of \(\vec{A}\) and \(\vec{B}\). This situation occurs only when the two vectors are in the same direction. ### Step-by-Step Solution: 1. **Understanding the Magnitude of the Resultant Vector:** The magnitude of the resultant vector \(\vec{R} = \vec{A} + \vec{B}\) can be expressed using the formula: \[ |\vec{R}| = |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta} \] where \(\theta\) is the angle between vectors \(\vec{A}\) and \(\vec{B}\). 2. **Setting Up the Equation:** According to the problem, we have: \[ |\vec{A} + \vec{B}| = |\vec{A}| + |\vec{B}| \] Therefore, we can write: \[ \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta} = |\vec{A}| + |\vec{B}| \] 3. **Squaring Both Sides:** To eliminate the square root, we square both sides: \[ |\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta = (|\vec{A}| + |\vec{B}|)^2 \] 4. **Expanding the Right Side:** Expanding the right-hand side gives: \[ (|\vec{A}| + |\vec{B}|)^2 = |\vec{A}|^2 + 2 |\vec{A}| |\vec{B}| + |\vec{B}|^2 \] 5. **Setting the Equations Equal:** Now we have: \[ |\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta = |\vec{A}|^2 + 2 |\vec{A}| |\vec{B}| + |\vec{B}|^2 \] 6. **Canceling Common Terms:** Canceling \( |\vec{A}|^2 \) and \( |\vec{B}|^2 \) from both sides results in: \[ 2 |\vec{A}| |\vec{B}| \cos \theta = 2 |\vec{A}| |\vec{B}| \] 7. **Dividing by \(2 |\vec{A}| |\vec{B}|\):** Assuming \( |\vec{A}| \neq 0 \) and \( |\vec{B}| \neq 0 \), we can divide both sides by \(2 |\vec{A}| |\vec{B}|\): \[ \cos \theta = 1 \] 8. **Finding the Angle:** The equation \( \cos \theta = 1 \) implies: \[ \theta = 0^\circ \] ### Conclusion: The angle between vectors \(\vec{A}\) and \(\vec{B}\) is \(0^\circ\), meaning they are in the same direction.

To solve the problem, we need to analyze the given condition: **Given:** \(|\vec{A} + \vec{B}| = |\vec{A}| + |\vec{B}|\) This condition implies that the resultant vector formed by adding vectors \(\vec{A}\) and \(\vec{B}\) has the same magnitude as the sum of the magnitudes of \(\vec{A}\) and \(\vec{B}\). This situation occurs only when the two vectors are in the same direction. ### Step-by-Step Solution: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

If |vecA+vecB|=|vecA|=|vecB| then angle between A and B will be

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

If vecA*vecB=|vecAxxvecB| . Then angle between vecA and vecB is

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

If |veca+ vecb| lt | veca- vecb| , then the angle between veca and vecb can lie in the interval

Assertion: If |veca|=|vecb|=|veca+vecb| =1, then angle between veca and vecb is (2pi)/3 , Reason: |veca+vecb|^2=|veca|^2+|vecb|^2+2(veca.vecb)| (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.