Home
Class 12
CHEMISTRY
Consider these reactions and their corre...

Consider these reactions and their corresponding `K_s`.
`{:(1/2N_2+O_2toNO_2,K_1),(2NO_2to2NO+O_2,K_2),(NOBrtoNO+1/2Br_2,K_3):}`
Express the K value for the reaction below in terms of `K_1,K_2 and K_3`
`1/2N_2+1/2O_2+1/2Br_2toNOBrK=?`

A

`K_1 K_1 K_3`

B

`(K_1K_2)/K_3`

C

`(K_1K_3^2)/K_2`

D

`(K_2K_3^3)/K_1`

Text Solution

AI Generated Solution

The correct Answer is:
To express the equilibrium constant \( K \) for the reaction \[ \frac{1}{2} N_2 + \frac{1}{2} O_2 + \frac{1}{2} Br_2 \rightarrow NOBr \] in terms of \( K_1, K_2, \) and \( K_3 \), we will manipulate the given reactions step by step. ### Step 1: Write down the given reactions and their equilibrium constants. 1. \(\frac{1}{2} N_2 + O_2 \rightarrow NO_2, \quad K = K_1\) 2. \(2 NO_2 \rightarrow 2 NO + O_2, \quad K = K_2\) 3. \(NOBr \rightarrow NO + \frac{1}{2} Br_2, \quad K = K_3\) ### Step 2: Manipulate the reactions to derive the desired reaction. **For the first reaction**: - We will use it as is: \[ \frac{1}{2} N_2 + O_2 \rightarrow NO_2 \quad (K_1) \] **For the second reaction**: - We need to divide the entire reaction by 2 to adjust the stoichiometry: \[ NO_2 \rightarrow NO + \frac{1}{2} O_2 \quad (K = K_2^{1/2} = \sqrt{K_2}) \] **For the third reaction**: - We need to reverse it to have \( NOBr \) on the reactant side: \[ NO + \frac{1}{2} Br_2 \rightarrow NOBr \quad (K = \frac{1}{K_3}) \] ### Step 3: Combine the manipulated reactions. Now we can add the reactions together: 1. \(\frac{1}{2} N_2 + O_2 \rightarrow NO_2 \quad (K_1)\) 2. \(NO_2 \rightarrow NO + \frac{1}{2} O_2 \quad (K = \sqrt{K_2})\) 3. \(NO + \frac{1}{2} Br_2 \rightarrow NOBr \quad (K = \frac{1}{K_3})\) ### Step 4: Write the overall reaction. When we add these reactions, we get: \[ \frac{1}{2} N_2 + O_2 + NO_2 + \frac{1}{2} Br_2 \rightarrow NO_2 + NO + \frac{1}{2} O_2 + NOBr \] ### Step 5: Cancel out the common terms. - \( NO_2 \) cancels out on both sides. - \( O_2 \) cancels out as well. This results in: \[ \frac{1}{2} N_2 + \frac{1}{2} Br_2 \rightarrow NOBr \] ### Step 6: Calculate the overall equilibrium constant \( K \). The overall equilibrium constant \( K \) for the reaction is given by the product of the constants of the individual reactions: \[ K = K_1 \cdot \sqrt{K_2} \cdot \frac{1}{K_3} \] Thus, we can express \( K \) as: \[ K = \frac{K_1 \sqrt{K_2}}{K_3} \] ### Final Answer \[ K = \frac{K_1 \sqrt{K_2}}{K_3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For the following reaction in gaseous phase, CO + (1)/(2) O_2 to CO_2 ,(K_c)/( K_p) is

Consider the reaction, NO_(2) rarr 1/2N_(2) + O_(2),K_(1) , N_(2)O_(4) rarr 2NO_(2) , K_(2) Give the equilibrium constant for the formation of N_(2)O_(4) "from" N_(2) "and" O_(2) .

Consider the reactions 1/2N_2+O_2hArrNO_2 K_1 2NO_2hArrN_2O_4 K_2 Using above equations , write down expression for K of the following reaction N_2O_4hArrN_2+2O_2 K

The equilibrium constant of the following are : " " {:(N_2+3H_2hArr 2NH_3, K_1),(N_2+O_2hArr 2NO , K_2) , (H_2+(1)/(2) O_2 to H_2O , K_3) :} The equilibrium constant (K) of the reaction : 2NH_3+(5)/(2) O_2 overset(k) hArr 2NO +3H_2O, will be (a) K_1K_3^(3) //K_2 (b) K_2K_3^(3) //K_1 (c) K_2K_3//K_1 (d) K_2^(3) K_3//K_1

For the reaction CO_((g)) + (1)/(2) O_(2(g)) to CO_(2(g)) K_(p)//K_(c) is

N_2O_2 hArr NO,K_1,1/2 N_2 +1/2O_2hArr NO,K_2 2NO hArr N_2+O_2k_3 , NO hArr 1/2 N_2 +1/2O_2 K_4

N_(2)O_(2) hArr 2NO, K_(1), (1/2)N_(2)+(1/2)O_(2) hArr NO, K_(2), 2NO hArr N_(2)+O_(2),K_(3), NO hArr (1/2)N_(2)+(1/2)O_(2),K_(4) Correct relaton(s) between K_(1), K_(2), K_(3) and K_(4) is/are

2N_2O_5 rarr 4 NO_2 +O_2 If -(D[N_2O_5])/(dt) =k_1[N_2O_5] (d[NO_2])/(dt) =k_2[N_2O_5] ([O_2])/(dt) =k_3[N_2O_5] What is the relation between k_1, k_2 and k_3 ? .

The following equilibria are given by : N_(2)+3H_(2) hArr 2NH_(3), K_(1) N_(2)+O_(2) hArr 2NO,K_(2) H_(2)+(1)/(2)O_(2) hArr H_(2)O, K_(3) The equilibrium constant of the reaction 2NH_(3)+(5)/(2)O_(2)hArr 2NO +3H_(2)O in terms of K_(1) , K_(2) and K_(3) is

In the two gaseous reactions (i) and (ii) at 250^@C (i) 2NO(g)+(1)/(2)O_2(g)hArrNO_2(g)K_1 (ii) 2NO_2(g) hArr2NO(g)+O_2(g),K_2 the equilibrium constants K_1 and K_2 are releated as