Home
Class 12
PHYSICS
If |vecAxxvecB|=sqrt(3) vecA.vecB, then ...

If `|vecAxxvecB|=sqrt(3) vecA.vecB`, then the value of `|vecA+vecB|` is

A

a `(A^2+B^2 + "AB"/sqrt3)^(1//2)`

B

b `A+B`

C

c `(A^2+B^2+sqrt3AB)^(1//2)`

D

d `(A^2+B^2+AB)^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ |\vec{A} \times \vec{B}| = \sqrt{3} (\vec{A} \cdot \vec{B}) \] ### Step 1: Use the definitions of cross product and dot product We know that: \[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \] \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \] ### Step 2: Substitute these definitions into the equation Substituting these into the given equation, we have: \[ |\vec{A}| |\vec{B}| \sin \theta = \sqrt{3} |\vec{A}| |\vec{B}| \cos \theta \] ### Step 3: Simplify the equation Assuming \( |\vec{A}| \) and \( |\vec{B}| \) are not zero, we can divide both sides by \( |\vec{A}| |\vec{B}| \): \[ \sin \theta = \sqrt{3} \cos \theta \] ### Step 4: Divide both sides by \( \cos \theta \) This gives: \[ \tan \theta = \sqrt{3} \] ### Step 5: Determine the angle \( \theta \) From the tangent function, we know: \[ \theta = 60^\circ \] ### Step 6: Find the magnitude of \( |\vec{A} + \vec{B}| \) Using the formula for the magnitude of the sum of two vectors: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta} \] ### Step 7: Substitute \( \cos 60^\circ \) We know that \( \cos 60^\circ = \frac{1}{2} \). Therefore, we can substitute this into the equation: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cdot \frac{1}{2}} \] ### Step 8: Simplify the expression This simplifies to: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + |\vec{A}| |\vec{B}|} \] ### Final Result Thus, the value of \( |\vec{A} + \vec{B}| \) is: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + |\vec{A}| |\vec{B}|} \]

To solve the problem, we start with the given equation: \[ |\vec{A} \times \vec{B}| = \sqrt{3} (\vec{A} \cdot \vec{B}) \] ### Step 1: Use the definitions of cross product and dot product ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

If |veca|=10,|vecb|=2andveca.vecb=12 , then the value of |vecaxxvecb| is

vecA and vecB are two vectors and theta is the angle between them, if |vecA xx vecB|=sqrt(3)(vecA.vecB) the value of theta is:-

If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|

If |veca.vecb|=sqrt(3)|vecaxxvecb| then the angle between veca and vecb is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

If |vecaxxvecb|=1/sqrt3|veca.vecb| , find the angle between vec a and vecb

If |veca|=2, |vecb|=5 and |vecaxxvecb|=8 then find the value of veca.vecb

a,b are the magnitudes of vectors veca & vecb . If vecaxxvecb=0 the value of veca.vecb is

If a,b are the magnitudes of vectors veca & vecb and veca.vecb=0 the value of |vecaxxvecb| is

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)