Home
Class 12
CHEMISTRY
The equivalent constant of the reaction:...

The equivalent constant of the reaction:
`Cu(s)+2Ag^(+)(aq.) rarr Cu^(2+)(aq.)+2Ag(s)`
`E^(@)=0.46 V` at `298 K`,is:

A

`4.0 xx 10^(15)`

B

`2.4 xx 10^(10)`

C

`2.0 xx 10^(10)`

D

`4.0 xx 10^(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant (K) for the reaction: \[ \text{Cu(s)} + 2\text{Ag}^+(aq) \rightleftharpoons \text{Cu}^{2+}(aq) + 2\text{Ag(s)} \] given that the standard cell potential \( E^0 = 0.46 \, \text{V} \) at \( 298 \, \text{K} \), we can use the Nernst equation. Here are the steps to solve the problem: ### Step 1: Write the Nernst Equation The Nernst equation relates the cell potential to the equilibrium constant: \[ E_{cell} = E^0 - \frac{2.303RT}{nF} \log K_{equilibrium} \] ### Step 2: Set Up the Equation at Equilibrium At equilibrium, the cell potential \( E_{cell} \) becomes 0. Thus, we can rewrite the equation as: \[ 0 = E^0 - \frac{2.303RT}{nF} \log K_{equilibrium} \] ### Step 3: Rearranging the Equation Rearranging the equation gives: \[ E^0 = \frac{2.303RT}{nF} \log K_{equilibrium} \] ### Step 4: Substitute Known Values We know: - \( E^0 = 0.46 \, \text{V} \) - \( R = 8.314 \, \text{J/(mol K)} \) - \( T = 298 \, \text{K} \) - \( F = 96485 \, \text{C/mol} \) - \( n = 2 \) (since 2 moles of electrons are transferred in the reaction) Substituting these values into the equation: \[ 0.46 = \frac{2.303 \times 8.314 \times 298}{2 \times 96485} \log K_{equilibrium} \] ### Step 5: Calculate the Coefficient Calculating the coefficient: \[ \frac{2.303 \times 8.314 \times 298}{2 \times 96485} \approx 0.0591 \] ### Step 6: Substitute Back into the Equation Now we have: \[ 0.46 = 0.0591 \log K_{equilibrium} \] ### Step 7: Solve for \( \log K_{equilibrium} \) Rearranging gives: \[ \log K_{equilibrium} = \frac{0.46}{0.0591} \] Calculating this: \[ \log K_{equilibrium} \approx 7.79 \] ### Step 8: Find \( K_{equilibrium} \) To find \( K_{equilibrium} \), we take the antilogarithm: \[ K_{equilibrium} = 10^{7.79} \] ### Step 9: Calculate the Final Value Calculating \( 10^{7.79} \): \[ K_{equilibrium} \approx 6.17 \times 10^7 \] ### Final Answer Thus, the equilibrium constant \( K \) for the reaction is approximately: \[ K \approx 6.17 \times 10^7 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

The equilibrium constant of the reaction; Cu(s)+2Ag + (aq)⟶Cu 2+ (aq)+2Ag(s) E o =0.46V at 298K

The equilibrium constant for the reactions Cu (s)+ 2Ag^(+) aq hArr Cu^(2+) (aq) +2Ag(s) is 2.0 xx 10 ^(15) " at " 278 K. Find the equilibrium concentration of Cu^(2+) (aq) if that of Ag^(+) (aq) is 1.0 xx 10 ^(-11) " mol " L^(-1)

The equilibrium constant of the reaction : Zn(s)+2Ag^(+)(aq)toZn(aq)+2Ag(s),E^(@)=1.50V at 298 K is

Given the equilibrium constant : K_(c) of the reaction : Cu(s) + 2Ag^(+)(aq) rightarrow Cu^(2+) (Aq) + 2Ag(s) is 10xx10^(15) , calculate the E_(cell)^(@) of this reaction at 298K . ([2.303 (RT)/(Ft) at 298K = 0.059V])

Write the equilibrium constant expressions for the following reactions. Cu( s)+ 2Ag^(+) (aq) hArr Cu^(2+) (aq) + 2Ag(s)

Electrochemical equivalent of Cu in the reaction Cu^(2+) + 2e^(-) rarr Cu(s) is :

The equilibrium constant for a cell reaction, Cu(g) + 2Ag^+(aq) → Cu^(2+)(aq) + 2Ag (s) is 4 × 10^16 . Find E° (cell) for the cell reaction.

Find the number of electrons transferred in the equation Cu(g) + 2Ag^+(aq) → Cu^(2+)(aq) + 2Ag(s) .