Home
Class 12
CHEMISTRY
For the reaction N(2)+3H(2) rarr 2NH(3),...

For the reaction `N_(2)+3H_(2) rarr 2NH_(3)`, if `(d[NH_(3)])/(dt).=4xx10^(-4)` mol `L^(-1)s^(-1)`, the value of `(-d[H_(2)])/(dt)` would be

A

`1 xx 10^(-4)` mol `L^(-1)s^(-1)`

B

`3xx10^(-4) mol L^(-1) s^(-1)`

C

`4 xx 10^(-4) mol L^(-1) s^(-1)`

D

`6xx10^(-4) mol L^(-1) s^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to relate the rates of change of the concentrations of the reactants and products in the given reaction: \[ N_2 + 3H_2 \rightarrow 2NH_3 \] We are given that the rate of formation of ammonia \((NH_3)\) is: \[ \frac{d[NH_3]}{dt} = 4 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] We need to find the rate of decrease of hydrogen \((H_2)\), which is represented as: \[ -\frac{d[H_2]}{dt} \] ### Step 1: Write the rate expressions based on stoichiometry From the balanced chemical equation, we can express the rates of change of the concentrations as follows: \[ \frac{1}{2} \frac{d[NH_3]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt} \] ### Step 2: Substitute the known value We know that: \[ \frac{d[NH_3]}{dt} = 4 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] Substituting this into the rate expression gives: \[ \frac{1}{2} (4 \times 10^{-4}) = -\frac{1}{3} \frac{d[H_2]}{dt} \] ### Step 3: Calculate the left-hand side Calculating the left-hand side: \[ \frac{1}{2} (4 \times 10^{-4}) = 2 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] ### Step 4: Rearranging to find \(-\frac{d[H_2]}{dt}\) Now we can rearrange the equation to find \(-\frac{d[H_2]}{dt}\): \[ 2 \times 10^{-4} = -\frac{1}{3} \frac{d[H_2]}{dt} \] Multiplying both sides by -3 gives: \[ -3 \times 2 \times 10^{-4} = \frac{d[H_2]}{dt} \] \[ \frac{d[H_2]}{dt} = -6 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] ### Step 5: Final answer Thus, the value of \(-\frac{d[H_2]}{dt}\) is: \[ -\frac{d[H_2]}{dt} = 6 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] ### Summary The final answer is: \[ \boxed{6 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1}} \]

To solve the problem, we need to relate the rates of change of the concentrations of the reactants and products in the given reaction: \[ N_2 + 3H_2 \rightarrow 2NH_3 \] We are given that the rate of formation of ammonia \((NH_3)\) is: \[ \frac{d[NH_3]}{dt} = 4 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

For the reaction , N_2+3H_2rarr2NH_3 if (d[NH_3])/(dt)=2xx10^(-4)"mol L"^(-1) s^(-1) , the value of (-d[H_2])/(dt) would be

For the reaction N_(2) + 3H_(2) to 2NH_(3) if (Delta[NH_(3)])/(Deltat) = 2 xx 10^(-4) mol L^(-1)s^(-1) , the value of (-Delta[H_(2)])/(Deltat) would be

For the reaction N_2(g) + 3H_2(g) to 2NH_3(g) " if " (Delta[NH_3])/(Deltat) = 4xx 10^(-4) mol.l^(-1) s^(-1) , the value of (-Delta[H_2])/(Deltat) would be

N_(2)+3H_(2) to NH_(3)

N_(2)+3H_(2) to NH_(3)

A+ 2B rarr C+D." If "-(d[A])/(dt)=5xx10^(-4)" mol L"^(-1) s^(-1)," then "-(d[B])/(dt) is :

K_(p) for the reaction N_(2)+3H_(2) hArr 2NH_(3) at 400^(@)C is 1.64xx10^(-4) atm^(-2) . Find K_(c) .

In the hober's process of ammonia manufacture, N_(2)(g)+3H_(2)(g) rarr2NH_(3)(g) the rate of appearance of NH_(3) is : (d[NH_(3)])/(dt)=2xx10^(-4)"mol" L^(-1)"sec"^(-1) The rates of the reaction expressed in terms of N_(2) and H_(2) will be :

For the reaction H_(2) (g)+I_(2)(g) rarr 2HI(g) , the rate of disappearance of H_(2) is 1.0 xx 10^(-4) mol L^(-1) s^(-1) . The rate of appearance of HI will be

In a reaction N_(2(g))+3H_(2(g))to2NH_(3(g)) rate of appearance of NH_(3) is 2.5xx10^(-4)molL^(-1)sec^(-1) then rate of reaction and rate of disappearance of H_(2) respectively is :-