Home
Class 12
CHEMISTRY
The following two reaction are known : ...

The following two reaction are known :
`Fe_(2)O_(3)(s)+3CO(g)rarr2Fe(s)+3CO_(2)(g)`,
`Delta H= -26.8 kJ`
`FeO(s)+CO(g)rarr Fe(s)+CO_(2)(g)` ,
`Delta H = - 16.5 kJ`
Correct target equation is
`Fe_(2)O_(3)(s)+CO(g)rarr 2FeO(s)+CO_(2)(g), Delta H = ?`

A

(a) `-43.3 kJ`

B

(b) `-10.3 kJ`

C

(c) `+6.2 kJ`

D

(d) `+10.3 kJ`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to manipulate the given reactions to derive the target equation and calculate the corresponding enthalpy change (ΔH). Here’s a step-by-step breakdown of the solution: ### Step 1: Write Down the Given Reactions and Their Enthalpy Changes 1. **Reaction 1**: \[ \text{Fe}_2\text{O}_3(s) + 3\text{CO}(g) \rightarrow 2\text{Fe}(s) + 3\text{CO}_2(g), \quad \Delta H_1 = -26.8 \, \text{kJ} \] 2. **Reaction 2**: \[ \text{FeO}(s) + \text{CO}(g) \rightarrow \text{Fe}(s) + \text{CO}_2(g), \quad \Delta H_2 = -16.5 \, \text{kJ} \] ### Step 2: Reverse Reaction 2 Since the target equation has FeO on the product side, we need to reverse Reaction 2: \[ \text{Fe}(s) + \text{CO}_2(g) \rightarrow \text{FeO}(s) + \text{CO}(g) \] When we reverse a reaction, the sign of ΔH also changes: \[ \Delta H_3 = +16.5 \, \text{kJ} \] ### Step 3: Multiply the Reversed Reaction by 2 To get 2 moles of FeO as required in the target equation, we multiply the reversed Reaction 2 by 2: \[ 2\text{Fe}(s) + 2\text{CO}_2(g) \rightarrow 2\text{FeO}(s) + 2\text{CO}(g) \] The enthalpy change for this reaction will also be multiplied by 2: \[ \Delta H_4 = 2 \times 16.5 \, \text{kJ} = 33.0 \, \text{kJ} \] ### Step 4: Add Reaction 1 and the Modified Reaction 4 Now we add Reaction 1 and Reaction 4: 1. **Reaction 1**: \[ \text{Fe}_2\text{O}_3(s) + 3\text{CO}(g) \rightarrow 2\text{Fe}(s) + 3\text{CO}_2(g) \] 2. **Modified Reaction 4**: \[ 2\text{Fe}(s) + 2\text{CO}_2(g) \rightarrow 2\text{FeO}(s) + 2\text{CO}(g) \] When we add these two reactions, we get: \[ \text{Fe}_2\text{O}_3(s) + 3\text{CO}(g) + 2\text{Fe}(s) + 2\text{CO}_2(g) \rightarrow 2\text{Fe}(s) + 3\text{CO}_2(g) + 2\text{FeO}(s) + 2\text{CO}(g) \] ### Step 5: Cancel Out Common Species On both sides, we can cancel out the common species: - 2Fe on both sides - 2CO2 on both sides This simplifies to: \[ \text{Fe}_2\text{O}_3(s) + \text{CO}(g) \rightarrow 2\text{FeO}(s) + \text{CO}_2(g) \] ### Step 6: Calculate the Overall Enthalpy Change Now we can calculate the overall ΔH for the target reaction: \[ \Delta H = \Delta H_1 + \Delta H_4 = -26.8 \, \text{kJ} + 33.0 \, \text{kJ} = 6.2 \, \text{kJ} \] ### Final Answer Thus, the enthalpy change for the target equation is: \[ \Delta H = +6.2 \, \text{kJ} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Justify that the following reactions are redox reactions : Fe_(2)O_(3)(s)+3CO(g)to2Fe(s)+3CO_(2)(g)

Delta S for the reaction , MgCO_(3)(s)rarr MgO(s)+CO_(2)(g) will be :

If 2AI(s) +1(1)/(2) O_(2)(g) rarr AI_(2)O_(3)(s), DeltaH =- 1667.8 kJ H_(2)(g) +(1)/(2)O_(2)(g) rarr H_(2)O(l), DeltaH =- 285.9 kJ Calculate DeltaH for the reaction AI_(2)O_(3)(s) rarr 2AI(s) +1(1)/(2)O_(2)(g)

Calculate the heat of formation of n butane from the following data: a. 2C_(4)H_(10)(g) +13O_(2)(g) rarr 8CO_(2)(g) +10H_(2)O(l), DeltaH = - 5757.2 kJ b. C(s) +O_(2) (g)rarrCO_(2)(g), DeltaH =- 405.4 kJ c. 2H_(2)(g) +O_(2)(g) rarr 2H_(2)O(l), DeltaH =- 572.4 kJ

From the data at 25^(@)C : Fe_(2)O_(3)(s) +3C_(("graphite")) rarr 2Fe(s) + 3CO(g), DeltaH^(Theta) = 492.0 kJ mol^(-1) FeO(s) +C_(("graphite")) rarr Fe(s) CO(g), DeltaH^(Theta) = 155.0 kJ mol^(-1) C_(("graphite")) +O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 393.0 kJ mol^(-1) CO(g)+(1)/(2)O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 282.0 kJ mol^(-1) Calculate the standard heat of formation of FeO(s) and Fe_(2)O_(3)(s) .

Given (i) 2Fe_(2)O_(3)(s) rarr 4Fe(s)+3O_(2)(g) , DeltaG^(@)=+1487.0 kj mol^(-1) (ii) 2CI(g)+O_(2) rarr 2CO_(2)(g) , Delta_(r )G^(@)=-514.4 kj mol^(-1) Free energy change Delta_(r)G^(@) for the reaction 2Fe_(2)O_(3)(s)+6CO(g) rarr 4Fe(s)+6cO_(2)(g) will be :

Calculate in kJ for the following reaction : C(g) + O_(2)(g) rarr CO_(2)(g) Given that, H_(2)O(g) + C(g) + H_(2)(g) , Delta H = +131 kJ CO(g) + 1/2 O_(2)(g) rarr CO_(2)(g), " " Delta H = -242 kJ H_(2)(g) + 1/2 O_(2)(g) rarr H_(2)O(g), " "DeltaH = -242 kJ

Consider the following reactions. DeltaH^(@) values of the reactions hve been given as -x, -y and z kJ. Fe_(3)O_(4)(s) to 3Fe(s) + 2O_(2)(g), DeltaH^(@) = z kJ 2Fe(s) + O_(2)(g) to 2FeO(s), DeltaH^(@) =-x kJ 4Fe(s) + 3O_(2)(g) to 2Fe_(2)O_(3)(s), DeltaH^(@) =-y kJ Heat of reaction for the reaction, FeO(s) + Fe_(2)O_(3)(s) to Fe_(3)O_(4)(s) is :

C(s)+(1)/(2)O_(2)(g)to CO(g), Delta H =- 42 kJ/mole CO(g)+(1)/(2)O_(2)(g)to CO_(2)(g) , Delta H =-24 kJ/mole The heat of formation of CO_(2) is

For CaCO_(3)(s)rarr CaO(s)+CO_(2)(g) at 977^(@)C, Delta H = 174 KJ/mol , then Delta E is :-